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1 Introduction

In this thesis, we develop an exact declarative programming based algorithmic approach to
finding so-called Pareto-optimal solutions to bi-objective optimization problems encoded in
propositional logic.

Optimization problems can be summarized as the task of finding a “best” solution out
of a collection of feasible ones. For example, when looking for a new flat to buy, most
people will be comparing prices with the aim to find the cheapest flat possible that fulfils
their requirements. Commonly, the notion of “best” that is used in optimization is that a
solution with lowest associated “cost” is considered optimal. For the example above, cost
is the price of a flat. If the collection of possible solutions is discrete (as in this example),
we speak of combinatorial optimization.

For many real-world problems, the set of feasible solutions is too large to represent explicitly.
Instead, the feasible solutions are implicitly represented, often declaratively as a set of
mathematical constraints. Solving such an implicitly defined optimization problem is
typically NP-hard [1] and requires non-trivial algorithmic approaches. Examples of such
optimization problems appear in scheduling [2–5], supply chain optimization [6], air traffic
management [7, 8], clustering [9, 10], and optimal data representation [11–17], among
various others.

Different approaches to NP-hard optimization have been proposed. These approaches
can be categorized as either exact or inexact. Inexact approaches provide no guarantee of
finding an optimal solution but provide a “good” solution within given resource constraints.
Examples of such approaches are stochastic local search [18] and evolutionary algorithms [19,
20]. Exact approaches, on the other hand, are guaranteed to find an optimal solution, given
enough resources. A central method for exact optimization is the so-called declarative
approach.

The declarative approach to solving optimization problems, as illustrated in Figure 1.1,
consists of first employing an encoding that casts the original problem into a set of
mathematical constraints formulated in a declarative language. An encoding is hereby a
mapping of each instance of the original problem to a set of constraints in the declarative
language, where each optimal solution of the encoded instance corresponds to an optimal
solution of the original instance. Having encoded the problem instance, a so-called solver,
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Figure 1.1: The solving pipeline of the declarative approach to optimization.

an algorithm for finding optimal solutions for instances formulated in the encoding language,
is invoked on the set of constraints to find a solution with the lowest cost. As a last step,
this found solution to the constraints is mapped back to an optimal solution of the original
instance.

An advantage of the declarative approach is that it is generally applicable to any problem,
as long as a compact encoding for said problem and a practical solver for the chosen
declarative language exist. When solving an optimization problem with the declarative
approach, the challenge lies in choosing the encoding language that allows for a natural
encoding, and finding such an encoding. Determining if a solution to constraints formulated
in an encoding language exists is typically NP-complete. For a given declarative language,
the existence of solvers that can efficiently solve relevant optimization instances of said
language is therefore critical as well. Branch-and-cut algorithms for mixed integer linear
programming (MILP) [21, 22] are an example of solver technology that achieves good
performance on real-world instances. The corresponding language of linear inequalities
is arguably the most classical language for modelling hard optimization problems. On
the other hand, it might come as a surprise that the encoding language of propositional
logic—which is arguably a low-level language—has seen a stark increase in usage as well.
This is in particular due to recent advances in propositional satisfiability (SAT) [23] and
conflict-driven clause learning solvers [24], the success of which has translated to increasing
success of the Boolean optimization paradigm of maximum satisfiability (MaxSAT) [25].

It should be noticed that a clear majority of declarative optimization approaches, including
MILP and MaxSAT, work under the assumption that we are dealing with problems which
intrinsically have a single objective to optimize. However, this is not always the case.
Coming back to the flat search example, we notice that some requirements, like the number
of rooms, might be easy to specify, but consider the distance of ones daily commute. Rather
than setting a fixed threshold such as “maximum d kilometres distance”, what we might
actually want to do is minimize this distance at the same time as the cost of the flat. Now
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there are two objectives to take into account regarding what constitutes a “best” solution.
Two or more objectives give rise to multi-objective optimization.

A crucial difference between single- and multi-objective optimization is that there is no
single prevalent notion of optimality for two or more objectives. Whereas for a single
objective function, there is a clear minimum (or maximum) and objective values can be
unambiguously compared, this becomes harder to define naturally for the bi-objective case:
in the flat search example, consider a flat A with a cost of 300 000 € and 1-kilometre daily
commute and compare it to another flat B that costs 240 000 € and has a 3-kilometre daily
commute. It is not immediately clear which one of these options is better, and the choice
would depend on ones personal preference over the two objectives. This becomes especially
difficult if there is no such preference. Typically, a situation like that occurs when two of
the objectives considered are in conflict, as the price of a flat and the corresponding daily
commute might be if the commute is towards the city centre and flats in the city centre
are more expensive.

In this thesis, we use the commonly-studied concept of Pareto optimality∗ [26] as the
notion of optimality for multi-objective optimization problems. Intuitively, under Pareto
optimality a solution is considered optimal if no solution that improves some objective
without worsening the others exists. As an example, this definition considers the two
flats A and B from earlier both equally optimal. Under Pareto optimality, the task of
solving a bi-objective optimization problem exactly can mean multiple things: finding a
single Pareto-optimal solution, finding a representative solution for each Pareto point (i.e.,
tuple of Pareto-optimal objective values)†, or finding all Pareto-optimal solutions. Many
approaches [28–30] to solving multi-objective optimization under Pareto optimality appear
to focus on the second task where a single solution per Pareto point is computed. The last
task goes one step further and enumerates the full Pareto front (i.e., all Pareto-optimal
solutions), even if multiple of the solutions might lead to the same objective values. All
three of these tasks can be solved by the algorithmic approach presented in this thesis.

We focus on the common class of bi-objective optimization problems, which have exactly
two objective functions. Bi-objective optimization problems arise naturally for various
real-world settings. For example, when learning interpretable classifiers [11–14, 17, 31–33],
the objectives “interpretability” and “classification error” are in conflict because a more
complex and therefore less interpretable classifier is typically more accurate. As another

∗Pareto optimality is sometimes called efficiency [26, 27]
†A Pareto point is also called a non-dominated point in literature [26]
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example, a bi-objective optimization problem arises when wanting to create a portfolio
of algorithms that together solve a set of benchmark instances as fast as possible while
also containing as few solvers as possible [29]. There are also bi-objective optimization
problems in network routing with the objectives load balancing and latency [34]. In supply
chain optimization, in addition to the economic objective, environmental aspects may be
of interest to take into consideration as a second objective [35, 36].

The main contribution of this work is the BiOptSat algorithm, a MaxSAT-based bi-
objective optimization approach. BiOptSat follows the lexicographic method [37], which
works by sequentially minimizing both objectives separately under the additional constraint
that the other objective cannot get worse. It terminates once no more solutions can be found,
at which point all Pareto-optimal solutions have been enumerated. Note the difference
between this lexicographic method compared to lexicographic optimization to which SAT-
based approaches have been proposed earlier [38, 39]. Lexicographic optimization only
considers the first Pareto point, found by the lexicographic method, optimal.

BiOptSat builds on advances in MaxSAT solving, allowing for variants based on different
so-called solution-improving [25, 40, 41] and core-guided [42–45] algorithms. Our algorithm
allows for solving all three tasks for bi-objective optimization: finding a single Pareto-
optimal solution, one representative solution for each Pareto point or enumerating all
Pareto-optimal solutions. We propose five different variants of BiOptSat that differ in
how the minimization of the “increasing” objective is handled. The first four building on
the SAT-UNSAT [40], UNSAT-SAT [46], MSU3 [42] and OLL [44] MaxSAT algorithms,
modifying them mainly in the fact that a bound on the decreasing objective needs be
enforced during optimization. The fifth variant is a hybrid, switching from MSU3 to the
SAT-UNSAT-based variant during the search, aiming to combine the advantages of the
two approaches. In addition to the five variants of BiOptSat, we also propose multiple
refinements for improving its performance: lazily building the cardinality constraints
for both objectives to reduce the number of clauses in the solver, blocking dominated
solutions to prune the search space, more efficient domain-specific blocking clauses, bound
hardening to enable the solver to learn more information and other refinements known
from core-guided MaxSAT solving.

We provide an open-source implementation of all five variants of BiOptSat (https:

//bitbucket.org/coreo-group/bioptsat/) and empirically evaluate its performance on
two benchmark domains: learning interpretable decision rules from binary data [11]
(as a generalization of settings for which MaxSAT-based single-objective solutions have

https://bitbucket.org/coreo-group/bioptsat/
https://bitbucket.org/coreo-group/bioptsat/
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been previously proposed) and bi-objective set covering. In the empirical evaluation,
we compare BiOptSat to three key SAT-based competitors: enumeration of so-called
P -minimal solutions [28], ParetoMCS enumeration [30] and Seesaw [29]. We find that
BiOptSat outperformed these competitors in all studied cases. As an additional result
of this evaluation, we determine which variant of BiOptSat is the best-performing
overall. Furthermore, for the best-performing variant, we study the effects of the proposed
refinements to determine their effectiveness.

This thesis is structured as follows. An overview of propositional satisfiability and maximum
satisfiability, highlighting the important preliminaries needed to understand the proposed
algorithm, is given in Chapter 2. In Chapter 3, we introduce bi-objective optimization,
defining the problem and surveying key existing algorithmic approaches to bi-objective
optimization. After that, in Chapter 4, we describe BiOptSat, including five distinct
variants and some refinements. Details on the empirical evaluation of our implementation
are provided in Chapter 5.

Results presented in this thesis have been published in the proceedings of the 25th Interna-
tional Conference on Theory and Applications of Satisfiability Testing (SAT 2022) [47]. In
this thesis, we extend on the empirical evaluation and give a more in-depth description of
the preliminaries and the algorithm itself, compared to [47].



2 Propositional Satisfiability

In this chapter, we provide an overview of propositional satisfiability (SAT) and maximum
satisfiability (MaxSAT). We discuss techniques that our algorithmic approach to bi-objective
optimization builds on: incremental SAT solving and cardinality constraints.

2.1 Propositional Satisfiability

For a Boolean variable v there are two literals, the positive v and the negative ¬v. A clause
C is a set of (i.e., disjunction over) literals, and a CNF formula F is a set of (i.e., conjunction
over) clauses [48]. Any propositional formula can be converted in linear time to an equivalent
CNF formula of linear size with the standard Tseitin encoding [48, 49]. The set of variables
and literals appearing in F are var(F ) and lit(F ), respectively. A truth assignment
τ maps Boolean variables to 1 (true) or 0 (false). The semantics of truth assignments
are extended to a negated variable ¬v, a clause C and a formula F in the standard way:
τ(¬v) = 1 − τ(v), τ(C) = max{τ(l) | l ∈ C}, and τ(F ) = min{τ(C) | C ∈ F}. When
convenient, we view an assignment τ over a set var(F ) of variables as the set of literals
τ = {v | v ∈ var(F ), τ(v) = 1} ∪ {¬v | v ∈ var(F ), τ(v) = 0}. An assignment τ for which
τ(F ) = 1 is a solution to F . The propositional satisfiability (SAT) problem asks to decide
whether a given CNF formula F has a solution. A CNF formula F is satisfiable if it has a
solution, otherwise it is unsatisfiable.

Example 2.1. Consider the CNF formula F1 = a ∧ ¬b over variables var(F1) = {a, b}.
This formula is satisfiable since for τ = {a,¬b}, τ(F1) = 1. The formula F2 = F1∧(¬a∨b)
on the other hand is not satisfiable. This is because the third clause is the negation of
F1.

The SAT problem was proved to be NP-complete by Cook [50]. This result is central to
the modern day use of SAT in the declarative programming approach to solving instances
of other NP-complete problems by encoding them as CNF formulas, solving these formulas
with a SAT solver and then decoding the solutions to the original problem domain (recall
Chapter 1). The advantage of using SAT as a declarative programming language for solving
other problems comes from the fact that state-of-the-art SAT solvers are efficient in practice
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and can solve real-world instances with up to millions of variables and clauses [24]. For this
reason, the SAT-based declarative approach is successful, even though CNF formulas only
support a very limited set of constraints (compared to many other declarative languages)
natively.

Example 2.2. We give an example of modelling the well-known set covering decision
problem [51] in SAT. The set covering problem is to decide whether a cover C of size
|C| ≤ b exists that intersects with (i.e., contains an element from) every set S ∈ S.
Encoding this problem as a CNF formula can be done by introducing a variable ve for
every distinct element e in the sets. If an assignment τ has τ(ve) = 1, this encodes
that the corresponding cover Cτ contains e. Every set is represented as a clause of the
corresponding variables. Lastly, assume that As-CNF (∑

v∈V v ≤ b), where V is the set of
all variables, encodes that a solution should assign at most b variables to 1. A set of
clauses like this is known as a cardinality constraint and possible ways of representing it
as a CNF formula will be discussed in Section 2.3. The clauses representing the sets
together with the cardinality constraint encode the set covering problem.

As a toy instantiation, assume the following situation. You have three guests coming
over and want to make a pizza on which each guest likes at least one topping. Guest A
tells you they like pepperoni, courgette, and bell pepper; Guest B likes chicken, avocado,
and prawns; Guest C likes mushrooms and chilli pepper. However, you only have enough
money to get two toppings from the store. The groups of toppings the guests like form
three sets, and you want to know if a cover (another collection of toppings) of at most
size two exists. For this example, the encoding described above yields the following
three clauses: CA = (vpepperoni ∨ vcourgette ∨ vbell pepper), CB = (vchicken ∨ vavocado ∨ vprawns),
CC = (vmushroom ∨ vchilli pepper). The constraint that the cover should have at most
cardinality 2 is encoded as the cardinality constraint As-CNF (∑

v∈V v ≤ 2).

We can now construct the CNF formula F = CA ∧ CB ∧ CC ∧ As-CNF (∑
v∈V v ≤ 2).

There is no solution of F , describing that there are no two toppings so that every guest
likes at least one of them. Now if Guest C says that they also like prawns, CC changes
to CC = (vmushrooms ∨ vchilli pepper ∨ vprawns) and the modified formula is satisfiable. One
solution τ of F is τ(vbell pepper) = τ(vprawns) = 1 and τ(v) = 0 for all other v. This tells
us that on a pizza with bell pepper and prawns, every guest will find something they like.
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2.2 Incremental SAT Solving under Assumptions

Many applications of SAT solving—such as algorithms for solving maximum satisfiabil-
ity [25]—require solving a series of interrelated SAT instances. We discuss state-of-the-art
SAT solvers and the incremental interface they provide.

A SAT solver [24] is an implementation of an algorithm that determines the satisfiability
of a given CNF formula F . If F is satisfiable, the solver returns “satisfiable” (SAT) and a
solution τ with τ(F ) = 1; if F is unsatisfiable, the return value is “unsatisfiable” (UNSAT).

So-called conflict-driven clause learning (CDCL) solvers represent the state of the art in
SAT solving. They have been found to solve many NP-hard real-world problem instances
significantly more efficiently than the potential exponential worst-case runtime. CDCL
solvers work on partial assignments to the variables in a given CNF formula F . During the
search for a satisfiable assignment, the partial assignment is extended through so-called
decisions and unit propagation. In a decision, the algorithm uses heuristics to select a value
for a variable that has no value in the current partial assignment. The deterministic process
of unit propagation finds variable assignments that are implied by the partial assignment,
i.e., must hold, as otherwise a clause would be falsified by the partial assignment. During
the search procedure, a partial assignment might lead to conflicts, meaning that F becomes
unsatisfiable. At this stage, CDCL analyses the conflict and learns a clause that ensures
that the current partial assignment will not be considered again. After conflict analysis, the
solver backtracks non-chronologically, removing some number of the most-recent decisions
and the resulting unit propagations. CDCL terminates once a solution is found or the
empty clause is learned. Since all learned clauses are logically entailed by F , learning the
empty clause proves that F is unsatisfiable.

To solve interrelated instances more efficiently, modern SAT solvers provide an incremental
interface that allows for retaining the state of the solver (e.g., learned clauses) from
previous solver calls [24, 52]. Retaining learned information this way allows CDCL solvers
to determine satisfiability for subsequent calls faster in many cases. Key to incremental
SAT solving are assumptions. An assumption is a literal that is treated as a temporary
unit clause, i.e., a solver call with internal formula F and a set of assumptions A either
returns SAT and a solution τ ⊃ A, or UNSAT and a subset κ ⊂ {¬l | l ∈ A} such that
F ∧ ∧

l∈κ(¬l) is unsatisfiable. The subset κ is called an unsatisfiable core [24] and implied
by F , meaning the assumptions it stems from cannot all be satisfied together with F .
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Example 2.3. Recall the toy instance from Example 2.2 after the change of guest C
liking prawns. Assume that there is no bell pepper at the store. To check if we can
still make a pizza with only two toppings such that every guest likes at least one of
the toppings, we can use incremental SAT solving. Instead of adding the fact that
bell pepper is not available as a new clause (¬vbell pepper), we can define assumptions
A = {¬vbell pepper}. Solving with these assumptions, the solver might return the solution
τ with τ(vcourgette) = τ(vprawns) = 1 and τ(v) = 0 for all other v.

If instead prawns are not available, we can set the set of assumptions to A = {¬vprawns}.
In this case, the solver will return UNSAT and the core κ = {vprawns}. The interpretation
of this core is that prawns need to be available so that we can make a pizza that satisfies
all constraints.

2.3 Encoding Cardinality Constraints as Totalizers

Many problem applications in the real world require so-called cardinality constraints,
enforcing a bound on how many literals in a given set can be assigned to true. In addition,
algorithms (for example for MaxSAT [25]) often enforce a bound on a linear objective.
The algorithmic approach to bi-objective optimization presented in this thesis also makes
heavy use of cardinality constraints. Formally, for a set L of literals and a bound b ∈ N,
As-CNF (∑

l∈L l ◦ b) denotes a CNF formula encoding the cardinality constraint (i.e., linear
(in)equality) ∑

l∈L l ◦ b, where ◦ ∈ {<, >,≥,≤, =}. Numerous methods of forming such
CNF formulas are known (e.g., [41, 53, 54]).

In this work we make use of the so-called totalizer encoding [53, 55]. Given a set L of n

input literals and a bound k ∈ {1, . . . , n}, the (incremental) totalizer encoding produces a
CNF formula Tot(L, k) that defines a set {⟨L < 1⟩, . . . , ⟨L < k + 1⟩} ⊂ var(Tot(L, k))
of output literals that—informally speaking—count the number of literals in L assigned to
true by solutions to Tot(L, k): if τ is an assignment that satisfies Tot(L, k) and b < k,
then τ(⟨L < b⟩) = 1 if and only if ∑

l∈L τ(l) < b. For applications where only either
upper or lower bounding of the number of literals assigned to true is needed, the size
of the encoded totalizer can be reduced by encoding implications in only one direction
instead of both (i.e., ⟨L < b⟩ ← (∑

l∈L l < b) or ⟨L < b⟩ → ∑
l∈L l < b, but not both).

The algorithmic approach presented in this thesis only uses upper bounding cardinality
constraints, therefore we employ the size-reduced version of the totalizer encoding. The
incremental totalizer supports both increasing the bound k and adding new input literals
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without having to rebuild the whole formula: we have that Tot(L, k) ⊂ Tot(L, k′) and
Tot(L, k) ⊂ Tot(L ∪ L′, k) hold for any bound k′ > k. This is desirable when making
incremental SAT calls where the bound or the set of input literals changes between calls,
since it allows for making earlier calls to the SAT solver on a formula with fewer clauses
and retaining information from these calls. Extending the totalizer means adding clauses
while reusing the ones that were previously added.

We use ⟨L ≤ b⟩ as a shorthand for the literal ⟨L < b + 1⟩; furthermore, if the maximal
bound k of a totalizer Tot(L, k) is clear from context or the bound is k = |L|, we omit it
and simply write Tot(L).

2.4 Maximum Satisfiability

Maximum satisfiability (MaxSAT) [25] is the optimization variant of SAT. In this work, by
MaxSAT we refer to weighted partial MaxSAT, in which a set of hard clauses F and a set
of soft literals O are given.∗ A solution of a MaxSAT instance is any solution (satisfying
assignment) of the hard clauses F . Each literal l ∈ O has an associated weight wl. The
task is to find an optimal solution, i.e., a solution that minimizes the linear function∑

l∈O τ(l) ·wl. Since the NP-complete SAT decision problem (recall Section 2.1) can clearly
be solved by MaxSAT (its optimization extension), MaxSAT is NP-hard.

In the same way that SAT can be used as a declarative language to solve other decision
problems, MaxSAT can be used to solve various types of NP-hard optimization problems
declaratively.

Example 2.4. Recall the set covering problem from Example 2.2. By removing the
constraint on the size of the cover and asking for a smallest cover, we can change the
problem from a decision to an optimization problem. For modelling this problem as
MaxSAT, we use the clauses representing the sets as hard clauses and each variable
as a soft literal. In terms of the toy instance from Example 2.2, we use the clauses
CA, CB and CC as hard clauses and all variables as soft literals. In the situation where
guest C does not like prawns, an optimal solution to this instance is τ1(vcourgette) =
τ1(vchicken) = τ1(vmushroom) = 1 and τ1(v) = 0 for all other v. This encodes that a pizza
∗We note that defining MaxSAT with soft literals is non-standard. However, soft clauses can be modelled

as soft literals by adding a new relaxation variable to the clause, treating the clause as hard and the
relaxation variable as a soft literal.
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needs to include at least three toppings so that every guest likes at least one of them
and one possible set of such toppings is courgette, chicken, and mushroom. If guest C
likes prawns, an optimal solution is τ2(vbell pepper) = τ2(vprawns) = 1 and τ2(v) = 0 for all
other v.

Many algorithms for solving MaxSAT have been proposed in recent years [40, 44–46, 56,
57]. Early approaches were based on the branch-and-bound scheme [58–62]. Over the years,
branch-and-bound was mostly displaced by algorithms that solve MaxSAT via solving
a number of SAT instances with the help of an underlying SAT solver [24], or solving
MaxSAT via integer programming [25]. Recently, there have also been results showing that
branch-and-bound combined with clause learning may also achieve good performance [57,
63]. MaxSAT algorithms using SAT solvers can be categorized w.r.t. how the objective
function is modelled: many algorithms encode cardinality constraints in CNF whereas the
implicit hitting set approach [56, 64–66] employs an integer programming solver to natively
handle the objective. This thesis builds on MaxSAT algorithms that solve a sequence of
SAT problems. These algorithms can be further categorized as either solution-improving,
bound-improving or core-guided algorithms. More detailed descriptions for most of these
algorithms can be found in [25].

The two conceptually-simplest algorithms we build on are solution-improving SAT-UNSAT
search [40] and bound-improving UNSAT-SAT search [46]. SAT-UNSAT (also known as
Linear SAT-UNSAT (LSU) [25]) search solves MaxSAT by starting from a known satisfiable
solution for the hard clauses. From this, a cardinality constraint is added to the SAT
solver, enforcing that the next found solution achieves a better objective value than the
last. If such a solution is found, the cardinality constraint is tightened to the objective
value of this new solution. As soon as the SAT solver returns UNSAT for a call, the last
found solution is known to be optimal. As this search procedure goes through a series of
satisfiable calls first, terminating at the first unsatisfiable call, it is known as SAT-UNSAT
search. In contrast to SAT-UNSAT, UNSAT-SAT search [46, 67] find the optimal value
by lower-bounding the objective value instead. It starts by adding a tight cardinality
constraint to the SAT solver—resulting in unsatisfiable queries—and slowly loosening the
constraint until a first satisfiable query is reached.

The other two algorithms we are building on in this thesis are MSU3 [42] and OLL [44, 45].
Both of these search procedures are core-guided, meaning they make use of unsatisfiable
cores returned by the SAT solver. Core-guided MaxSAT was first proposed with the
algorithm now known as Fu-Malik [46]. The central insight behind core-guided MaxSAT is
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that an optimal solution must assign at least one of the soft literals in every core to true. In
the MSU3 algorithm, the soft literals are assumed to false and cores are extracted over them.
When a soft literal appears in a core, this literal is removed from the assumptions and then
added to a cardinality constraint allowing some soft literals to be true. Every iteration
increases the bound of the cardinality constraint by one. With this, MSU3—as also every
other core-guided algorithm—makes a series of unsatisfiable SAT queries, terminating at
the first satisfiable one, which yields the optimal solution. OLL, which was first proposed
for the paradigm of answer set programming [68] and later applied to MaxSAT [44, 45],
differs from MSU3 in how the extracted cores are relaxed. Instead of building one large
cardinality constraint over all cores, it builds an individual cardinality constraint for each
core. Furthermore, these cardinality constraints are not treated as hard but as additional
soft clauses, meaning they can be relaxed in subsequent iterations of the algorithm.



3 Bi-Objective Optimization

In this chapter, we provide background on bi-objective optimization, describing the prob-
lem setting considered as an instantiation of the more general case of multi-objective
optimization. We also provide an overview of other notions of optimality (apart from
Pareto optimality) for multiple objectives and existing approaches to solving bi-objective
optimization problems.

3.1 Multi-Objective Pareto Optimization

Given p objective functions fi : X → R+, where i = 1, . . . , p, in multi-objective optimization
the task is to find one or more x ∈ X that are optimal (under a predetermined notion of
optimality) w.r.t. p objective functions [69]. In this work, w.l.o.g. we consider minimization
problems. Formally, a multi-objective optimization problem (MOOP) is of the form

min(f1(x), . . . , fp(x)), subject to x ∈ X . (3.1)

Problems with p = 2 are called bi-objective optimization problems.

Since the objectives might be in conflict with each other, for multi-objective optimization
there is no single optimal tuple of objective function values. We say that two objectives are
in conflict in the likely case that their respective global optima cannot be reached at the
same time. One central way to define optimality for multiple objectives is that of Pareto
optimality.

Definition 3.1 (Dominated solutions [26]). Given a MOOP as defined in Equation (3.1)
and two solutions x, x′ ∈ X , x dominates x′ (w.r.t. f1, . . . , fp) if (i) fi(x) ≤ fi(x′) for all
i = 1, . . . , p, and (ii) fi(x) < fi(x′) for some i ∈ {1, . . . , p}. We represent x dominating
x′ by x ≺ x′.

Definition 3.2 (Pareto optimality [26]). Given a MOOP as defined in Equation (3.1), a
solution x ∈ X is Pareto-optimal (w.r.t. f1, . . . , fp) if and only if there is no x′ ∈ X such
that x′ ≺ x, i.e., x is not dominated by any other solution.
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When the objectives are clear from context, we will simply say that a solution x is Pareto-
optimal. Note that there can be multiple Pareto-optimal solutions to a MOOP. The
set of all Pareto-optimal solutions is called the Pareto front (w.r.t. f1, . . . , fp); the tuple
(f1(x), . . . , fp(x)) for a Pareto-optimal x—i.e., the image of x in the space defined by the
objective functions—is a Pareto point (also called non-dominated point in literature [26]).
There can be multiple Pareto-optimal solutions that correspond to the same Pareto point.

We consider three central related tasks for solving multi-objective optimization problems
under Pareto optimality.

(i) Finding a single Pareto-optimal solution (e.g., [70]),

(ii) finding a representative solution for every Pareto point (e.g., [28, 29]), and

(iii) finding all Pareto-optimal solutions (e.g., [71]).

Our algorithmic approach can be used for solving all three of these tasks.

3.2 Bi-Objective Optimization in a SAT Context

As in MaxSAT (recall Section 2.4), we consider optimization problems with linear objective
functions. We extend the formalization of MaxSAT to bi-objective optimization in the
following way. The set of feasible solutions is declaratively represented as the CNF formula
F . An objective O is a multiset of literals. Formalizing an objective as multisets allows
for representing integer weights by adding a literal multiple times. The value O(τ) of a
truth assignment τ under O is O(τ) = ∑

l∈O τ(l), i.e., the number of literals in O that τ

assigns to 1. A bi-objective instance in the SAT context is a triple of a CNF formula and
two objectives.

Example 3.3. An example formula F and two objectives OI and OD are shown on
the left side in Figure 3.1. The solution space is illustrated on the right. The three
solid dots correspond to the three Pareto points of F w.r.t. OI and OD. Examples
of Pareto-optimal solutions corresponding to these points are τ o

1 = {i2, d1, d3, d4,¬i1,

¬i3,¬i4,¬d2}, τ o
2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4} and τ o

3 = {i1, i3, i4, d2,¬i2,¬d1,¬d3,

¬d4}. The solution τ c
3 = {i2, d1, d2, d3, d4,¬i1,¬i3,¬i4} is dominated by τ o

1 (τ o
1 ≺ τ c

3)
because OI(τ o

1 ) ≤ OI(τ c
3) and OD(τ o

1 ) < OD(τ c
3).
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F =
{

As-CNF

 ∑
l∈OI∪OD

l ≥ 4

 ,

(i1 ∨ i2), (i2 ∨ i3), (i2 ∨ i4)

(d1 ∨ d2), (d2 ∨ d3), (d2 ∨ d4)
}

,

OI ={i1, i2, i3, i4},

OD ={d1, d2, d3, d4}
0 1 2 3 4

0

1

2

3

4

τ c1τ c2
τ c3

τo1

τ c4τo2

τo3

OI

O
D

Infeasible region

Solutions

Pareto-optimal solutions

Figure 3.1: Left: An example formula F and two objectives OI and OD. Right: the feasible region of F

in the objective space defined by OI and OD. The solutions τo
1 and τo

2 (solid points) are Pareto-optimal,
while τ c

i for i = 1, . . . , 4 are not.

An important property of Pareto-optimal solutions to bi-objective problems is summarized
by the next observation.

Observation 3.4 (Adapted from [72]). Sorting the Pareto-optimal solutions of a bi-
objective optimization problem under the objectives f1 and f2 w.r.t. increasing values of
f1 amounts to sorting them w.r.t. decreasing values of f2 and vice-versa.

Example 3.5. Consider the formula F , the objectives OI and OD and the three Pareto-
optimal solutions τ o

1 , τ o
2 and τ o

3 from Figure 3.1 and Example 3.3. By Observation 3.4,
sorting the Pareto-optimal solutions by decreasing value for one objective results in
sorting them by increasing values for the other objective: we have OI(τ o

1 ) = 1 < OI(τ o
2 ) =

2 < OI(τ o
3 ) = 3 and OD(τ o

1 ) = 3 > OD(τ o
2 ) = 2 > OD(τ o

3 ) = 1.

3.3 On Other Notions of Optimality

As mentioned in Section 3.1, Pareto optimality is only one—although a central—notion
of optimality for multiple objectives. Two other notions of optimality for bi-objective
optimization that narrow down the set of solutions considered optimal are lexicographic
optimization and lexicographic max-ordering optimization [73]. These notions of optimality
can be seen as a way of specifying in advance which Pareto-optimal solutions are of interest.
The solutions considered optimal are a subset of all Pareto-optimal solutions [73] and
every algorithm finding all Pareto-optimal solutions will therefore also find all solutions
optimal under these other notions. For this reason, finding an optimal solution under these
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other notions of optimality can be considered easier than finding a representative solution
for every Pareto point or enumerating all Pareto-optimal solutions. Both lexicographic
optimization and lexicographic max-ordering optimization are applicable for any number
of objectives. Here we describe them in the context of bi-objective optimization.

In lexicographic optimization [73], a preference over the objectives is enforced, considering
only one of the “end points” of the Pareto front—i.e., a Pareto-optimal solution with the
smallest value for the objective chosen as primary—optimal. Formally, given a feasible
set X and two objectives f1 and f2, a solution x dominates another solution x′ in the
lexicographic sense if (a) f1(x) < f1(x′), or (b) f1(x) = f1(x′) and f2(x) < f2(x′). Intuitively,
lexicographic optimization minimizes f1, using f2 as a tie-breaker. The comparison criterion
can also be seen as lexicographically comparing the string of objective values of two solutions,
hence the name of the notion of optimality.

Example 3.6. Consider again the formula F and the objectives OI and OD from
Figure 3.1. Assume the objective OI is chosen as the objective with higher priority. In
this case, all solutions corresponding to the Pareto point (3, 1) (e.g., τ o

1 = {i2, d1, d3, d4,

¬i1,¬i3,¬i4,¬d2}) are lexicographically optimal.

Lexicographic optimization can be cast into an optimization problem with a single objective
with the help of the weighted sum method [70]. This is a common approach to solving
lexicographic optimization, since solving algorithms for optimization problems with one
objective are widely available (e.g., MaxSAT [25] or integer linear programming solvers [21]).

Lexicographic max-ordering (leximax) optimization [73] is closely related to lexicographic
optimization. The difference between these two is that for leximax optimization, the
objective values are sorted in descending order before comparing them lexicographically.
This leads to the Pareto points with the smallest maximum objective value being considered
optimal. Let fmax(x) = max{f1(x), f2(x)} and fmin(x) = min{f1(x), f2(x)}. Formally, a
solution x dominates another solution x′ in the leximax sense if (a) fmax(x) < fmax(x′),
or (b) fmax(x) = fmax(x′) and fmin(x) < fmin(x′). Informally speaking, this notion of
optimality seeks to keep all objective values low by minimizing the maximum value first.
All leximax-optimal solutions are contained in the set of Pareto-optimal solutions. However,
they might correspond to different Pareto points.
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Example 3.7. Consider again the formula F and the objectives OI and OD in Figure 3.1.
The solution τ o

2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4} is leximax-optimal since it has the
smallest maximum objective value.

3.4 Approaches to Bi-Objective Optimization

In this section, we give an overview of earlier-proposed approaches to solving bi-objective
optimization problems. The focus here lies on Section 3.4.1, surveying SAT-based ap-
proaches. In addition, we shortly survey exact approaches based on other declarative
optimization paradigms, mainly constraint and mixed integer programming. We conclude
the section by giving a brief overview of inexact methods and discuss approaches that make
use of different optimality definitions.

3.4.1 SAT-Based Approaches

We highlight three key SAT-based approaches to bi-objective optimization under Pareto
optimality: enumeration of P -minimal solutions, enumeration of Pareto-minimal correction
sets, and Seesaw. Furthermore, we touch on SAT-based optimization under lexicographic
optimality.

P -Minimal Solution Enumeration

The approach perhaps closest to the one presented in this thesis reduces finding Pareto
points to the enumeration of so-called P -minimal solutions [28, 74]. This approach was
originally proposed for solving constraint satisfaction problems [75] encoded in CNF via the
order encoding [76]. We note that the approach can be used with any encoding that allows
for representing an objective value as a sorted unary number. Here we present enumeration
of P -minimal solutions using the totalizer encoding (recall Section 2.3) instead of the order
encoding as it also produces a unary representation of the objective values.

Finding the Pareto points to the bi-objective optimization problem defined by F , O1 and
O2 corresponds to enumerating the solutions of F W = F ∧Tot(O1) ∧Tot(O2) that are
subset-minimal w.r.t. the outputs of the totalizers assigned to 0. More precisely, if P is
the set of output literals of Tot(O1) ∧Tot(O2), then the goal is to enumerate solutions
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τm such that no other solution τ has {l | l ∈ P, τ(l) = 0} ⊊ {l | l ∈ P, τm(l) = 0}. The
procedure for enumerating such solutions [74] works by

(i) using a solver to obtain any solution τ of F W,

(ii) iteratively minimizing the subset of variables of P set to true by the solution, and,

(iii) once a minimal solution τm has been found, adding the clause (⟨OI < k1⟩∨⟨OD < k2⟩)
containing the output variables corresponding to the lowest index set to true by τm.

We refer to the algorithm for enumerating P -minimal solutions as “P -minimal” for short.

Example 3.8. Consider the formula F and two objectives OI and OD from Figure 3.1.
P -minimal starts by building two totalizers Tot(OI) and Tot(OD) and invoking the
SAT solver on F W = F ∧Tot(OI)∧Tot(OD). The result is satisfiable; assume the first
solution obtained is τ c

1 = {i1, i2, i3, i4, d1, d2, d3, d4}.∗ In order to minimize τ c
1 , the clause

(⟨OI < 4⟩ ∨ ⟨OD < 4⟩) is added to the SAT solver, and the solver is invoked again under
the assumptions {⟨OI ≤ 4⟩, ⟨OD ≤ 4⟩}. The added clause blocks τ c

1 and all solutions
dominated by τ c

1 from the search space. Assume the next solution obtained is τ c
5 = {i1,

i3, i4, d1, d3, d4,¬i2,¬d2}. Again, a clause (⟨OI < 3⟩ ∨ ⟨OD < 3⟩) is added, and the SAT
solver is queried with the assumptions {⟨OI ≤ 3⟩, ⟨OD ≤ 3⟩}. The result is SAT; assume
the solution obtained is τ o

2 = {i2, d1, d3, d4,¬i1,¬i3,¬i4,¬d2}. P -minimal then adds
the clause (⟨OI < 2⟩ ∨ ⟨OD < 2⟩) and invokes the solver again under the assumptions
{⟨OI ≤ 2⟩, ⟨OD ≤ 2⟩}. The result is UNSAT which proves that τ o

2 is Pareto-optimal. To
find a next Pareto-optimal solution, the solver is queried without any assumptions for a
new solution to start the minimization process from.

As presented in [28], P -minimal enumerates a single representative solution per Pareto
point. It can, however, be extended to enumerating all Pareto-optimal solutions by adding
a relaxation variable to the clause added at each iteration and iteratively blocking solutions
once they have been proven to be Pareto-optimal. More details on this are given later on
Section 5.2.

∗Note that the assignment of the auxiliary and output variables of the totalizer encoding are implied
by the assignment of the input variables. For this reason we omit them when giving the assignment of a
solution.
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Enumeration of Pareto-Minimal Correction Sets

An approach for computing Pareto-optimal solutions via so-called Pareto-minimal correction
sets (ParetoMCSes) has been previously proposed [30, 77, 78]. A ParetoMCS (w.r.t. two
objectives O1 and O2) consists of two sets of literals (M1, M2) such that (i) M1 ⊂ O1

and M2 ⊂ O2, and (ii) there is a Pareto-optimal solution τ that sets τ(l) = 1 for all
l ∈ M1 ∪M2 and τ(l) = 0 for all other l ∈ (O1 ∪O2) \ (M1 ∪M2). Computing Pareto-
optimal solutions can be reduced to the computations of ParetoMCSes [30]. The task of
computing ParetoMCSes is accomplished by enumerating all subsets T ⊂ (O1 ∪O2) for
which (i) F ∧ ∧

l∈(O1∪O2)\T (¬l) is satisfiable, and (ii) F ∧ ∧
l∈(O1∪O2)\T ′(¬l) is unsatisfiable

for all T ′ ⊊ T . Let T be the collection of all such sets. The Pareto-optimal solutions are
obtained by extracting the solutions satisfying F ∧ ∧

l∈(OI∪OD)\T (¬l) for all T ∈ T and
removing the dominated ones [30]. The computation of T corresponds to enumeration of
minimum correction sets, to which numerous algorithms have been proposed [79–81]. The
ParetoMCS approach to multi-objective optimization is approximative in that it can only
guarantee that a solution is Pareto-optimal once the full set T has been computed.

Example 3.9. Consider the formula F and two objectives OI and OD from Figure 3.1.
The ParetoMCS enumeration procedure will return the solution τ = {i1, i3, i4, d1, d3, d4,

¬i2,¬d2} since no solution τ ′ of F has {l ∈ OI ∪OD | τ ′(l) = 1} ⊊ {i1, i3, i4, d1, d3, d4}.
The solution τ is not Pareto-optimal, but only filtered out when a solution that dominates
it is enumerated. However, there are no guarantees on when such a dominating solution
is found.

We will refer to this algorithm for enumerating Pareto-optimal solutions via enumerating
ParetoMCSes as “ParetoMCS” for short.

Implicit Hitting Set Approach: Seesaw

The implicit hitting set approach [82–86] has, among other formalisms and problems, been
successfully applied to MaxSAT [56, 64–66] and other SAT-related applications [87–89].
Recently, Seesaw [29] was proposed as a generalized implicit hitting set framework for
bi-objective optimization. The overarching idea is that an optimization problem is modelled
as a set K of so-called cores which represent an undesirable or conflicting substructure of
the problem. Note that these cores are not necessarily equal to a core in SAT solving as
described in Section 2.2; for this reason, we will be referring to them as optimization cores



20 CHAPTER 3. BI-OBJECTIVE OPTIMIZATION

from now on. For multiple objectives, an optimization core is only equivalent to a core if
the decreasing objective is constrained to not be worse than the last value. In contrast to
our work, in Seesaw one of the objectives is treated as a black box. This black box view
does, however, also allow for SAT-based instantiations of Seesaw.

In our context the Seesaw algorithm computes Pareto-optimal solutions of a formula F

w.r.t. OI and OD by maintaining a collection K of optimization cores that are subsets
of OI. Informally speaking, in the bi-objective setting, every solution τ that improves
on OD needs to assign at least one literal from each core to 1. The algorithm works
iteratively by computing a hitting set hs ⊂ OI (using an integer programming solver),
i.e., a subset-minimal set of literals of OI that intersects with each optimization core in
K. Next, a solution τ is computed, so that τ(l) = 1 for each l ∈ hs, τ(l) = 0 for each
l ∈ OI \ hs, and OD(τ) is the smallest possible value for all such solutions if one exists.
This is the step which employs a SAT solver in our instantiations of the algorithm. Seesaw
then extracts a new core that hs does not intersect with. The Pareto-optimal solutions of
F are identified by the size of the hitting set increasing. More precisely, if the hitting set is
found to increase from size |hs| to size |hs2| with |hs2| > |hs|, the solution τ found with a
hitting set of size |hs| that has the smallest minimum value OD(τ) is Pareto-optimal [29].

Example 3.10. Consider the formula F and two objectives OI and OD from Figure 3.1.
Initially, there are no optimization cores, so K = ∅ and hs = ∅. Since there is no τ that
sets τ(l) = 0 for each l ∈ OI, the iteration ends by extracting the optimization core OI.
The intuition is, that any solution τ of F sets at least one variable in OI to 1. In the
next iteration, a minimum hitting set over K = {OI} is computed. There are a number
of alternatives; assume hs = {i1}. Since there is no τ that sets τ(i2) = τ(i3) = τ(i4) = 0,
the iteration ends with extracting the optimization core {i2, i3, i4}. The same intuition as
earlier holds for this core. Assume the next hitting set computed is hs = {i2}. Now there
is a τ that sets τ(i1) = τ(i3) = τ(i4) = 0; one that also minimizes OD(τ) is τ o

1 = {i2,

d1, d3, d4,¬i1,¬i3,¬i4,¬d2}. The iteration ends with extracting the optimization core
κ = {i1, i3, i4}. Now the intuition is that, since τ o

1 minimizes OD over solutions that
assign τ(l) = 0 for every l /∈ hs, every solution that obtains a lower value of OD

assigns at least one literal of κ to 1. Assume next we get hs = {i3} for which no
corresponding solution exists; the optimization core {i1, i2, i4} is added to K. Now
we have K = {OI, {i2, i3, i4}, {i1, i3, i4}, {i1, i2, i4}}; the only minimum hitting set is
hs = {i4}. There is no τ that sets τ(i1) = τ(i2) = τ(i3) = 0 so a new optimization core
{i1, i2, i3} is extracted. Next, one possible hitting set is hs = {i1, i3}. Since the size of
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the hitting set grew from 1 to 2, the algorithm concludes that τ o
1 is Pareto-optimal. The

algorithm continues in this manner, finding the Pareto-optimal τ o
2 and τ o

3 in the process.
After computing the hitting set consisting of all literals in OI, the core extracted is ∅ at
which point the algorithm terminates.

Note that the optimization core extraction strategy that only computes OI \ hs as the new
optimization core detailed in the example corresponds to what is called the weakest possible
strategy in the original paper [29]. Seesaw is only feasible in practice when using a stronger
optimization core extraction strategy since Seesaw otherwise reduces to enumerating all
subsets of OI as hitting sets [29]. One such stronger strategy for extracting optimization
cores that is generally applicable if the oracle function is anti-monotone was presented in
the original paper [29]. When using a SAT-based instantiation of the black box objective
in Seesaw, it is also possible to use cores extracted by the SAT solver as the optimization
cores for Seesaw. More details on this are given with the concrete instantiations of Seesaw
that we implement in Section 5.2.

Also note that, in contrast to BiOptSat and P -minimal, extending Seesaw as it was
originally presented [29] to support the enumeration of all Pareto-optimal solutions seems
non-trivial. For a non-formal intuition note that, while Seesaw is guaranteed to find at
least one solution obtaining the objective values of each Pareto point, the non-deterministic
hitting set computation might steer the algorithm past other solutions that obtain the
same values.

SAT-Based Lexicographic Optimization

There is also earlier work on SAT-based lexicographic optimization (recall Section 3.3) [38,
39, 90]. Lexicographic optimization is closely related to the so-called multi-level optimization
problem. In particular, both can be cast as single-objective optimization and solved with a
MaxSAT solver [38, 39]. In fact, many modern MaxSAT solvers exploit multilevel properties
of input instances in order to improve search efficiency [91, 92].

3.4.2 Other Declarative Optimization Paradigms

Beyond SAT-based approaches, multi-objective optimization has been studied in the
context of other declarative optimization paradigms. An early algorithm that can be used
in constraint programming [75] is based on the lexicographic method [93]. A branch-and-
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bound-based algorithm that outperforms the previous algorithm was presented later [94].
This improved filtering algorithm was improved again by the Pareto constraint [72, 95].
The resulting search algorithm is similar to ParetoMCS in that it maintains a set T of
solutions that do not dominate each other. When a new solution is found, any solution it
dominates is removed from T .

Other than approaches for finding all Pareto-optimal solutions, there have also been
constraint programming algorithms proposed for finding leximax-optimal solutions. In [96],
five algorithms for this problem are given. There is one branch-and-bound-based algorithm
and another algorithm based on adding constraints to encode the sorted objective value
vector, minimizing multiple times over that.

Multi-objective optimization has also been studied in the context of linear programming,
mixed integer programming and zero-one-programming [97–99]. There are different al-
gorithmic approaches in this field, some based on the Simplex algorithm [100, 101], others
on branch-and-bound [27, 102] while a last category build on reducing the problem of
finding a Pareto-optimal solution to single-objective mixed integer programming [103–105].

3.4.3 Inexact Approaches

Other than the exact algorithms, there are also inexact search algorithms for multi-objective
optimization problems [106–110]. These algorithms are not guaranteed to return the exact
Pareto front, but they will return approximately optimal solutions. Depending on the
application, such an approximate solution might be sufficient. Inexact algorithms are
mainly used for problems that are too large to solve them with exact methods under given
resource constraints.

Literature on inexact optimization algorithms is vast, for a survey see [106]. Algorithms
that have been extended to multiple objectives include, e.g., Pareto local search [107–109],
simulated annealing [111–113] and evolutionary algorithms [19, 20, 110, 114]. Both of
these categories of algorithms can be described as “local search style”, where one or more
solutions are iteratively modified to find better solutions.



4 The BiOptSat Algorithm

In this chapter, we detail BiOptSat, the MaxSAT-based approach to bi-objective optim-
ization developed in this work, together with its variants. Section 4.1 gives an overview of
the algorithmic framework, while Section 4.2 presents five specific instantiations of one of
the subroutines, based on established MaxSAT algorithms. Furthermore, in Section 4.3 we
discuss refinements to BiOptSat.

4.1 Overview of the Algorithm

Algorithm 1 details the BiOptSat framework for computing the Pareto-optimal solutions
of a given CNF formula F w.r.t. two given objectives OI and OD. BiOptSat is an
instantiation of the general lexicographic method [37] instantiated with a SAT solver. To
find a Pareto-optimal solution, the lexicographic method for multi-objective optimization
defines multiple iterative single-objective optimization problems minimizing the objectives
in order, where later calls are under the additional constraint that the objectives already
minimized by earlier calls cannot take worse values than the found minimum. Once a
first Pareto-optimal solution is found, the search continues by adding a constraint that
one of the objectives needs to be improved. The lexicographic method will enumerate
all Pareto-optimal solutions in monotonically-increasing order of the first objective. By
Observation 3.4, for bi-objective optimization this means that the solutions are enumerated
in decreasing order for the second objective. With this intuition, we call objective OI

increasing and OD decreasing.

In BiOptSat, the lexicographic method is instantiated with a single SAT solver that
all subroutines make use of. This single solver instantiation is invoked incrementally and
preserved (i.e., not reset) during the whole search. BiOptSat maintains the bounds bI and
bD on the two objectives OI and OD, respectively. In each iteration, the Minimize-Inc

procedure sets the value of bI to the smallest value for which there still is an undiscovered
Pareto-optimal solution τ o for which OI(τ o) = bI. The value of bD is then set to OD(τ o) by
the Solution-Improving-Search procedure.

In the default configuration shown in Algorithm 1, BiOptSat solves the task of finding a
single representative per Pareto point. In case one wishes to enumerate all Pareto-optimal
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Algorithm 1 BiOptSat: MaxSAT-based bi-objective optimization
Input: A formula F , two objectives OI and OD.
Output: Either a single representative for each Pareto point of F or the full Pareto front.

1: InitSATsolver(F )
2: (res, τ)← isSAT(∅) {Invokes the SAT solver on the formula}
3: if res = UNSAT then
4: return “no solutions”
5: bD ←∞, bI ← −1
6: while res = SAT do
7: (bI, τ)← Minimize-Inc(bD, bI, OI(τ)) {Maintains Tot(OI) (or similar)}
8: (bD, τ)← Solution-Improving-Search(bI, OD(τ)) {Builds Tot(OD)}
9: yield τ {Optionally: yield EnumSols(bD, bI)}

10: (res, τ)← isSAT({⟨OD < bD⟩})

solutions, the EnumSols procedure enumerates all Pareto-optimal solutions τ o for which
OI(τ o) = bI and OD(τ o) = bD. We note that finding a single Pareto-optimal solution
accounts to terminating the algorithm as soon as the first Pareto-optimal solution is
returned. This first solution is also guaranteed to be lexicographically optimal with the
increasing objective having higher priority.

In detail, given a formula F and two objectives OI and OD, the search of BiOptSat in
Algorithm 1 starts by initializing a SAT solver with all clauses in F on Line 1. Satisfiability
(i.e., the existence of any Pareto-optimal solutions) is checked by invoking the SAT solver
on its internal formula without assumptions via the isSAT(∅) function (Line 2). Here,
isSAT(A) denotes an incremental invocation of the SAT solver initialized on Line 1, with
the set of assumptions A. It has three return parameters, (res, τ, κ) where the first is either
SAT or UNSAT, indicating if the internal formula is satisfiable with the given assumptions. If
res = SAT, τ is populated by a satisfying assignment and κ is not modified; if res = UNSAT,
κ is populated with an unsatisfiable core and τ is not modified. In case the returned core of
a specific call is not used, we will omit it as a return parameter. On Line 2, if res is UNSAT,
the formula has no Pareto-optimal solutions and the algorithm terminates. Otherwise τ is
an assignment that satisfies the formula. Before the main enumeration procedure starts,
the bounds bI and bD on OI and OD are set to −1 and ∞, respectively.

The main search loop (Lines 6–10) iterates as long as there are Pareto-optimal solutions
of F that have not been enumerated yet. This is the case if there is a solution τ for
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which OD(τ) < bD, which is determined by invoking the SAT solver under the assumption
⟨OD < bD⟩ on Line 10. In the beginning of each main loop iteration, the procedure
Minimize-Inc is employed to minimize the increasing objective, i.e., to compute the
smallest value bI for which there is a solution τm with OI(τm) = bI and OD(τm) < bD

(Line 7). The parameters of the Minimize-Inc procedure are the bound bD that the
decreasing objective of the found solution needs to be below, bI as a known lower and
OI(τ r) as a known upper bound on the minimum increasing objective value. We assume
that Minimize-Inc maintains a way to enforce that OI(τ) < b, e.g., through a totalizer
Tot(OI), and that BiOptSat and all of its subroutines have access to a set of assumptions
for enforcing this bound for any b. Details of different instantiations of the Minimize-Inc

subroutine are discussed in Section 4.2.

Next, the algorithm employs solution-improving search [25, 40, 41] to minimize the de-
creasing objective, i.e., to compute the smallest bD for which there is a solution τ o with
OI(τ o) = bI and OD(τ o) = bD (Line 8). The totalizer Tot(OD, OD(τ)) is built the
first time this subroutine is invoked. Building the totalizer at this point allows for only
building it up to bound OD(τ), since all Pareto-optimal solutions are known to have at
most that value for OD. Solution-improving search works by—starting from the known
upper bound b = OD(τ)—iteratively invoking the SAT solver under the assumptions
{⟨OD < b⟩, ⟨OI ≤ bI⟩} for decreasing values of b until the query is unsatisfiable. As soon as
unsatisfiability is reached, Solution-Improving-Search returns bD = b + 1 and the last
solution τ for which OI(τ) = bI and OD(τ) = bD. At this point, we know that there is no
solution of F that dominates τ , so τ is returned as Pareto-optimal on Line 9. If one wants
to enumerate all solutions τ o that correspond to the Pareto point (bI, bD), the EnumSols

procedure repeatedly invokes the SAT solver with the assumptions {⟨OD ≤ bD⟩, ⟨OI ≤ bI⟩}
blocks every found solution by adding a clause that prevents the solver from finding that
same solution again. EnumSols terminates as soon as not more solutions are found.

Example 4.1. Invoke BiOptSat on the formula F and objectives OI, OD detailed
in Figure 4.1. The search starts by invoking a SAT solver on F . This call returns a
solution, say τ c

1 = {i1, i2, i3, i4, d1, d2, d3, d4} for which OI(τ c
1) = OD(τ c

1) = 3. The first
iteration of the main search loop starts with a call to Minimize-Inc. This returns bI = 1
and, e.g., the solution τ c

3 = {i2, d1, d2, d3, d4,¬i1,¬i3,¬i4} for which OI(τ c
3) = 1 and

OD(τ c
3) = 3. BiOptSat then proceeds to the Solution-Improving-Search subroutine

that initializes a totalizer Tot(OD, 4). The first call to the SAT solver is made with the
assumptions A = {⟨OI ≤ 1⟩, ⟨OD < 4⟩}. The query is satisfiable. Say that the solver
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F =
{

As-CNF

 ∑
l∈OI∪OD

l ≥ 4

 ,

(i1 ∨ i2), (i2 ∨ i3), (i2 ∨ i4)

(d1 ∨ d2), (d2 ∨ d3), (d2 ∨ d4)
}

,

OI ={i1, i2, i3, i4},

OD ={d1, d2, d3, d4}
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Figure 4.1: Left: The same example formula F and two objectives OI and OD as in Figure 3.1. Right:
the feasible region of F in the objective space defined by OI and OD. Furthermore, the search progression
of the SAT-UNSAT variant of BiOptSat.

returns the solution τ o
1 = {i2, d1, d3, d4,¬i1,¬i3,¬i4,¬d2}. Then, the solver is invoked

with the assumptions A = {⟨OI ≤ 1⟩, ⟨OD < 3⟩}. The query is unsatisfiable, so the
procedure returns the Pareto-optimal τ o

1 and bD = OD(τ o
1 ) = 3. Now optionally, the

procedure EnumSols can be used to enumerate all other solutions corresponding to the
Pareto point (OI(τ o

1 ), OD(τ o
1 )). At the end of the iteration, the SAT solver is queried

with the assumption {⟨OD < 3⟩}. As the query is satisfiable and the solver returns, e.g.,
the solution τ c

4 = {i1, i2, i3, d1, d2,¬i4,¬d3,¬d4}, the algorithm starts a new iteration.

The next iteration of BiOptSat proceeds similarly to the first. The procedure
Minimize-Inc returns bI = 2 and, e.g., the solution τ o

2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,

¬d4}. Solution-Improving-Search cannot improve on the decreasing objective, so the
solution τ o

2 is proven to be Pareto-optimal. At the end of the iteration, on Line 10 the
SAT solver is invoked with the assumption {⟨OD < 2⟩}. This query is satisfiable and
the solver returns, e.g., the solution τ o

3 = {i1, i3, i4, d2,¬i2,¬d1,¬d3,¬d4}.

The last iteration starts by calling Minimize-Inc which returns bI = 3 and, e.g., again
the solution τ o

3 . Solution-Improving-Search, again, cannot improve on the decreasing
objective, so τ o

3 is also Pareto-optimal. Lastly, the SAT solver is queried with the
assumption {⟨OD < 1⟩}. This query is unsatisfiable, terminating the algorithm.

4.2 Variants for Minimizing the Increasing Objective

We consider five different instantiations of the Minimize-Inc procedure for minimizing the
increasing objective. The first four (SAT-UNSAT, UNSAT-SAT, MSU3 and OLL) are inspired
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Algorithm 2 SAT-UNSAT instantiation of Minimize-Inc
Input: Last bound bD on OD and known upper bound b on the minimum value of OI.
Output: Solution τ and smallest b = OI(τ) so that OD(τ) < bD.

1: build or extend Tot(OI, b) if necessary
2: (res, τ)← isSAT({⟨OD < bD⟩, ⟨OI < b⟩})
3: while res = SAT do
4: b← OI(τ)
5: (res, τ)← isSAT({⟨OD < bD⟩, ⟨OI < b⟩})
6: return (b, τ)

by existing MaxSAT algorithms already described in Section 2.4 while the last (MSHybrid)
switches between two MaxSAT-like algorithms to combine their advantages. We do not
define similar variants for the Solution-Improving-Search procedure, since this procedure
needs to perform upper-bounding search in order to be able to incrementally use the SAT
solver.

4.2.1 SAT-UNSAT

SAT-UNSAT is a variant of solution-improving search [25, 40, 41] that is also used for
minimizing OD. The inputs to the procedure are the last bound bD on OD and the upper
bound b = OI(τ) on the minimum value of the increasing objective known from the last
SAT solver call. The known lower bound is not needed for this variant. Since the last call
is made on Line 10 with the assumption ⟨OD < bD⟩, the solution τ will have OD(τ) < bD.

SAT-UNSAT is outlined as Algorithm 2. The procedure maintains the totalizer Tot(OI)
and begins on Line 11 by checking if the current upper bound on Tot(OI) is at least
b, extending the totalizer if not. Then the SAT solver is iteratively invoked with the
assumptions {⟨OD < bD⟩, ⟨OI < b⟩} for decreasing values of b (Line 15). The procedure
terminates when the query is unsatisfiable, after which (on Line 16) the value of b and the
solution obtained during the final satisfiable call are returned as bI and τ .

Example 4.2. Consider the invocation of BiOptSat detailed in Example 4.1. We detail
the invocation of Minimize-Inc instantiated as SAT-UNSAT. The full progression of the
search of BiOptSat with Minimize-Inc instantiated as SAT-UNSAT is illustrated in
Figure 4.1. In the first iteration, SAT-UNSAT is invoked with bD =∞ and b = OI(τ c

1) = 4.
At this point, the totalizer over OI has not been built, so the procedure starts by adding



28 CHAPTER 4. THE BIOPTSAT ALGORITHM

Algorithm 3 UNSAT-SAT instantiation of Minimize-Inc
Input: Last bound bD on OD and last bound bI on OI.
Output: Solution τ and smallest b = OI(τ) so that OD(τ) < bD.

1: b← bI

2: build or extend Tot(Act, b + 1)
3: (res, τ)← isSAT({⟨OD < bD⟩, ⟨OI ≤ b + 1⟩})
4: while res = UNSAT do
5: b← b + 1
6: extend Tot(OI, b + 1)
7: (res, τ)← isSAT({⟨OD < bD⟩, ⟨OI ≤ b + 1⟩})
8: return (b + 1, τ)

Tot(OI, 4) to the solver. The first call to the SAT solver is made with the assumptions
{⟨OI < 4⟩}, since bD =∞ and therefore no assumption constraining OD is needed. The
query is satisfiable. Assume that the solver returns the solution τ c

2 = {i1, i2, d1, d2, d3,

d4,¬i3,¬i4}. In the next iteration, the set of assumptions is {⟨OI < 2⟩}. The query is
again satisfiable and the solver returns, e.g., the solution τ c

3 = {i2, d1, d2, d3, d4,¬i1,¬i3,

¬i4}. The SAT solver is then invoked with the assumptions {⟨OI < 1⟩}. Now the query
is unsatisfiable so the procedure terminates and returns bI = 1 and τ c

3 .

In the second iteration of BiOptSat, SAT-UNSAT is invoked with bD = 3 and
b = OI(τ c

4) = 3. The first call to the SAT solver is made with the assumptions
{⟨OD < 3⟩, ⟨OI < 3⟩}. The query is satisfiable. Assume that the solver returns the
solution τ o

2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4}. SAT-UNSAT invokes the SAT solver again
with the assumptions {⟨OD < 3⟩, ⟨OI < 2⟩}. The query is unsatisfiable, so the procedure
returns bI = 2 and τ o

2 .

In the third (and last) iteration of BiOptSat, SAT-UNSAT is invoked with bD = 2 and
b = OI(τ o

3 ) = 3. The SAT solver is queried with the assumptions {⟨OD < 2⟩, ⟨OI < 3⟩},
which is unsatisfiable. Hence, SAT-UNSAT returns bI = 3 and τ o

3 .

4.2.2 UNSAT-SAT

UNSAT-SAT takes an analogous approach to SAT-UNSAT search but searches for the smallest
value by lower-bounding instead of upper-bounding [46]. As input parameters it receives
the last bound bD on OD and the last bound bI on OI as a lower bound on the sought-after



4.2. VARIANTS FOR MINIMIZING THE INCREASING OBJECTIVE 29

smallest value. The upper bound on the smallest value is not made use of for this variant.
UNSAT-SAT also maintains a totalizer Tot(OI).

The UNSAT-SAT instantiation of Minimize-Inc proceeds as illustrated in Algorithm 3. On
Line 17, the bound b is set to the known lower bound bI and the solver is then iteratively
queried on Line 23 under the assumptions {⟨OI ≤ b + 1⟩, ⟨OD < bD⟩}. If the query is
unsatisfiable, the bound b is increased by 1 and the solver is queried again. The search
ends once the query is satisfiable; in this case, the solution, and the bound are returned on
Line 24. Since the bound of this lower bounding search procedure will only monotonically
increase, it is enough if the totalizer Tot(OI) is at every step built up to the bound b + 1
(Line 22) and extended to the next bound in the next iteration. This way, the SAT solver
is always queried over a minimum number of clauses.

Example 4.3. Consider the invocation of BiOptSat detailed in Example 4.1. Here we
detail the invocation of Minimize-Inc instantiated as UNSAT-SAT. In the first iteration,
UNSAT-SAT is invoked with bD =∞ and bI = −1. At this point, the totalizer over OI has
not been built, so the procedure starts by initializing Tot(OI, 0) and invokes the SAT
solver with the assumptions {⟨OI ≤ 0⟩}. The query is unsatisfiable, so the totalizer is
extended to Tot(OI, 1) and the SAT solver invoked with the assumptions {⟨OI ≤ 1⟩}.
The query is satisfiable. Assume that the returned solution is τ c

3 = {i2, d1, d2, d3, d4,¬i1,

¬i3,¬i4}. Hence, UNSAT-SAT returns bI = 1 and τ c
3 .

In the second iteration of BiOptSat, UNSAT-SAT is invoked with bD = 3 and bI = 1.
The totalizer is extended to Tot(OI, 2) and the solver is invoked with the assumptions
{⟨OI ≤ 2⟩, ⟨OD < 3⟩}. The query is satisfiable. Assume that the returned solution is
τ o

2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4}. Hence, the routine returns bI = 2 and τ o
2 .

In the last iteration of BiOptSat, UNSAT-SAT is invoked with bD = 2 and bI = 2. The
totalizer is extended to Tot(OI, 3) and the solver is invoked with the assumptions
{⟨OI ≤ 3⟩, ⟨OD < 2⟩}. The query is satisfiable. Assume that the returned solution is
τ o

3 = {i1, i3, i4, d2,¬i2,¬d1,¬d3,¬d4}. Hence, UNSAT-SAT returns bI = 3 and τ o
3 .

4.2.3 MSU3

MSU3 implements a core-guided approach inspired by the MSU3 MaxSAT algorithm [42].
The input parameters of this subroutine are the last bound bD on OD and the last bound
bI on OI as a lower bound on the sought-after smallest value. The upper bound on the
smallest value is not needed for this variant.
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Algorithm 4 MSU3 instantiation of Minimize-Inc
Input: Last bound bD on OD and last bound bI on OI.
Output: Solution τ and smallest b = OI(τ) so that OD(τ) < bD.

1: b← max{bI, 0}
2: (res, τ, κ)← isSAT({⟨OD < bD⟩, ⟨OI ≤ b⟩} ∪ {¬l | l ∈ OI \ Act})
3: while res = UNSAT do
4: b← b + 1
5: κ← κ \ {¬⟨OD < bD⟩,¬⟨OI ≤ b⟩}
6: Act← Act ∪ κ

7: build or extend Tot(Act, b)
8: (res, τ, κ)← isSAT({⟨OD < bD⟩, ⟨OI ≤ b⟩} ∪ {¬l | l ∈ OI \ Act})
9: return (b, τ)

The MSU3 instantiation does not maintain a totalizer Tot(OI), but a set Act ⊂ OI of
active objective literals and a totalizer Tot(Act) built over them. Initially Act = ∅, i.e., all
literals of OI are inactive. Informally speaking, an inactive literal l ∈ OI \ Act is assumed
to the value 0 in every invocation of the SAT solver until it is returned as part of a core.
Algorithm 4 illustrates the search performed by MSU3. The algorithm starts from the value
b = bI computed in the previous iteration and invokes the SAT solver with the assumptions
A = {⟨Act ≤ b⟩, ⟨OD < bD⟩} ∪ {¬l | l ∈ OI \ Act} on Line 26. If the query is unsatisfiable,
the SAT solver returns a core κ ⊂ {¬l | l ∈ A}. Next, the bound b is increased by one, the
inactive literals in κ are added to Act and the totalizer Tot(Act) is extended (Lines 28–31).
The procedure continues until the query is satisfiable, and a solution τ which has OI(τ) = b

and OD(τ) < bD is found. At that point the value b is the minimum value OI(τ) for any
solution τ subject to OD(τ) < bD. This is because the value of b is increased monotonically,
and the solver returned unsatisfiable in the second-to-last iteration.

For enforcing OI(τ) ≤ bI when employing MSU3, consider an invocation of MSU3(bD, bI) made
during BiOptSat and assume it returns the tuple (bI, τ). In the next call to Solution-

Improving-Search, the number of literals in OI set to 1 needs to be restricted to at most
bI. Since the totalizer maintained by MSU3 only has Act ⊂ OI as inputs, we do not have
access to an output literal of form ⟨OI ≤ bI⟩. Instead, we use the assumptions {⟨Act ≤
bI⟩}∪{¬l | l ∈ OI \Act}, i.e., restrict the number of literals in Act set to 1 to bI and assume
the value of each inactive literal l ∈ OI \ Act to 0. In the following proposition, we prove
that doing so can be done without removing any Pareto-optimal solutions from the search.
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Proposition 4.4. Let τ o be a Pareto-optimal solution of F for which OI(τ o) = bI. Then
τ o(l) = 0 for all l ∈ OI \ Act.

Proof. (Sketch) Since, bI was returned by MSU3, we know that there exists a Pareto-
optimal τ o for which OI(τ o) = bI and OD(τ o) < bD. By the properties of cores, we also
know that any solution τ s of F for which OD(τ s) < bD assigns at least bI literals in Act

to 1. Thus, any τn that assigns τn(l) = 1 for an inactive literal l ∈ OI \ Act will have
OI(τn) > bI.

Example 4.5. Consider the invocation of BiOptSat detailed in Example 4.1. Here we
detail the invocations of Minimize-Inc instantiated as MSU3. In the first iteration of
BiOptSat, MSU3 is invoked with bD =∞ and bI = −1. Initially, the set Act = ∅ of active
literals is empty, so the first call to the SAT solver is made with the assumptionsA = {¬i1,

¬i2,¬i3,¬i4}. The query is unsatisfiable. Assume that the solver returns κ = {i1, i2}.
The literals in κ are marked as active and the totalizer Tot(Act, 1) is initialized. The
SAT solver is then invoked with the assumptions A = {¬i3,¬i4, ⟨Act ≤ 1⟩}. The query
is satisfiable so the procedure returns, e.g., bI = 1 and the solution τ c

3 = {i2, d1, d2, d3,

d4,¬i1,¬i3,¬i4}.

In the next iteration of BiOptSat, MSU3 is invoked with bD = 3 and bI = 1. The
set Act = {i1, i2} is kept from the previous iterations, so the first call to the SAT
solver is made with the assumptions A = {⟨OD < 3⟩, ⟨Act ≤ 1⟩,¬i3,¬i4}. The query
is unsatisfiable. Assume that the core returned by the solver is κ = {¬⟨OD < 3⟩,
¬⟨Act ≤ 1⟩, i3, i4}. The totalizer outputs ¬⟨OD < 3⟩ and ¬⟨Act ≤ 1⟩ are discarded, i3

and i4 are added to the active literals, and the totalizer is extended to Tot(Act, 2). The
SAT solver is queried again with the assumptions A = {⟨OD < 2⟩, ⟨Act ≤ 2⟩}; the query
is satisfiable. Assume that the returned solution is τ o

2 = {i1, i2, d1, d2,¬i3,¬i4,¬d3,¬d4}.
MSU3 returns bI = 2 and τ o

2 .

In the last iteration, MSU3 is invoked with bD = 2 and bI = 2. The SAT solver is queried
with the assumptions A = {⟨OD < 2⟩, ⟨Act ≤ 2⟩}. The query is unsatisfiable; assume
that the core is κ = {¬⟨OD < 2⟩,¬⟨Act ≤ 2⟩}. Both totalizer outputs are discarded,
and the totalizer is extended to Tot(Act, 3). The solver is queried again with the
assumptions A = {⟨OD < 2⟩, ⟨Act ≤ 3⟩}. The query is satisfiable. Assume that the
returned solution is τ o

3 = {i1, i3, i4, d2,¬i2,¬d1,¬d3,¬d4}. Then MSU3 returns bI = 3 and
τ o

3 .
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Algorithm 5 MSHybrid instantiation of Minimize-Inc
Input: Last bound bD on OD, known upper and lower bounds b and bI on min. of OI.
Output: Solution τ and smallest b = OI(τ) so that OD(τ) < bD.

1: if |Act| < thr · |OI| then
2: (bI, τ)← MSU3(bD, bI) {Immediately terminates once |Act| < thr · |OI| is met}
3: if |Act| ≥ thr · |OI| then
4: fully build or extend Tot(OI, b) if necessary
5: (bI, τ)← SAT-UNSAT(bD, b)
6: return (bI, τ)

4.2.4 OLL

As mentioned in Section 2.4, the OLL MaxSAT algorithm [44, 45] builds a cardinality
constraint for each core extracted from the formula, treating the totalizer outputs as part
of the objective. The same holds for the OLL instantiation of Minimize-Inc. Assume in
the ith iteration, OLL extracts the core κi. It will build a totalizer Tot(κi, 1) and enforce∑

l∈κi
l ≤ 1 as an assumption. For all literals in the extracted core, if the literal is part of

the objective, the literal is marked as active. If the literal is the output of a totalizer built
over a previous core, the bound enforced on that totalizer is increased by one. In each
iteration, the assumptions given to the SAT solver consist of (i) the inactive literals of OI,
(ii) the outputs of previously built totalizers corresponding to the lowest number of input
literals that should be assigned to 1 in any possible satisfying assignment, and (iii) the
bound ⟨OD < bD⟩. The procedure terminates when the SAT solver returns a solution τ .

Similarly to MSU3, the assumptions for enforcing a bound on OI in the other subroutines
of Algorithm 1 need to be adapted when using OLL by assuming the inactive literals of
l ∈ OI \ Act to 0. Additionally, a set of assumptions over the totalizer outputs needs to be
included.

4.2.5 MSHybrid

The final variant proposed in this work, MSHybrid, is a hybrid between MSU3 and SAT-UNSAT

with the following intuition: if MSU3 reaches the stage where all literals of the objective
are active, its search will break down to UNSAT-SAT, meaning it is a lower-bounding search
where the bound on the totalizer Tot(OI) is increased by one every iteration until the
SAT query is satisfiable. Existing work in MaxSAT suggests that SAT-UNSAT is a better
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approach than using UNSAT-SAT for solving problems arising in real-world domains. If
this is the case, MSU3 might have an advantage over SAT-UNSAT as long as not all literals
are active, but as soon as all literals are active, this advantage is gone. Furthermore, if a
problem instance has literals in OI that never appear in any cores (i.e., are not constrained
by F ), these literals will never appear in any core making MSU3 behave like UNSAT-SAT

even before the totalizer is fully built.

With this intuition, we propose MSHybrid as a hybrid variant that starts with MSU3 search
and switches over to SAT-UNSAT as soon as a certain percentage of the literals in OI have
been added to the totalizer Tot(Act). The subroutine—that takes the last bound bD on OD,
the known upper b = OI(τ) and lower bounds bI on the minimum of OI as input—is outlined
as Algorithm 5. Additionally, MSHybrid has a configuration parameter thr that defines
at what percentage of the literals in OI being active it switches from MSU3 to SAT-UNSAT.
Initially MSHybrid will execute MSU3 on Line 35. If MSU3 finds the minimum without meeting
the condition |Act| < thr · |OI|, the found minimum bI and corresponding solution τ will be
returned on Line 39. In case |Act| < thr·|OI| is met during the execution of MSU3, MSU3 will
immediately be terminated. On Line 37, Tot(OI, k) will then be fully built from the existing
Tot(Act) and SAT-UNSAT invoked on Line 38. From now on, every call to MSHybrid will call
SAT-UNSAT on Line 38. With this, the advantages of both MSU3 and SAT-UNSAT can in the
best case be combined. A similar approach of combining core-guided and solution-improving
search is known in incomplete MaxSAT solving as core-boosted linear search [115].

Example 4.6. Consider the invocation of BiOptSat detailed in Example 4.1. We
detail the invocations of Minimize-Inc instantiated as MSHybrid. Since MSHybrid starts
out as MSU3, the first invocation follows the description in Example 4.5.

Assume MSHybrid is configured to switch as soon as 70% of the literals in OI are active
(thr = 0.7). Since after the first iteration of BiOptSat we have Act = {i1, i2}, the
second invocation of MSHybrid also starts as MSU3 since less than 70% of the literals
in OI are active. As soon as i3 and i4 become active, with the first core in the second
invocation of MSU3, the MSU3 subroutine is terminated since the threshold for switching
to SAT-UNSAT is reached. Because all literals in OI are already active in this example
and therefore included in Tot(Act), the totalizer does not need to be extended. SAT-

UNSAT can directly be invoked as in the second iteration outlined in Example 4.2.

In the third iteration of BiOptSat, MSHybrid will directly invoke SAT-UNSAT, which
proceeds as described in the third iteration in Example 4.2.
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4.3 Refinements to BiOptSat

Finally, we discuss possible refinements to BiOptSat. Later on, we will empirically
evaluate the impact of these refinements on the runtime performance of the algorithm.

4.3.1 Lazily Building Tot(OD)

Assume that BiOptSat is invoked on a formula F and a pair of overlapping objectives
OI and OD for which OI ∩OD ̸= ∅ with Minimize-Inc instantiated as MSU3 or OLL. Let
Act be the set of active literals of OI as maintained by Minimize-Inc. Lazy building
of Tot(OD) refers to only having (OD \ OI) ∪ (Act ∩ OD) as input to the totalizer
(incrementally extending the totalizer as the set Act grows), and assuming the value of each
literal l ∈ (OD ∩OI) \ Act to 0 in each SAT call made during invocations of Solution-

Improving-Search. The soundness of doing so follows by an argument very similar to
Proposition 4.4. Essentially, the properties of cores imply that the Pareto-optimal solutions
τ o of F for which OI(τ o) = bI assign τ o(l) = 0 for all l ∈ (OD ∩OI) \ Act.

The idea behind this refinement is to build the totalizer only over literals that can be
assigned to 1 by Pareto-optimal solutions that are currently enumerated. With this,
unnecessary clauses are removed from the working formula of the SAT solver.

Lazy building of Tot(OD) requires a minor adjustment of the termination criterion of
Algorithm 1. More specifically, as the totalizer maintained by Solution-Improving-

Search might not have all literals of OD as inputs, the algorithm does not have a (straight-
forward) way of checking if there exists a solution τ for which OD(τ) < bD. However, the
lack of further Pareto-optimal solutions is instead detected in the next call to Minimize-

Inc by the SAT solver returning a core that only contains the assumption used for bounding
the value of OD.

4.3.2 Blocking of Dominated Solutions

Every time in BiOptSat that a candidate solution τ with objective values bI = OI(τ) and
bD = OD(τ) is found, the definition of a Pareto-optimal point leads to the conclusion that
all solutions τ d with OI(τ d) > bI and OD(τ d) > bD cannot be Pareto-optimal. These points
can all be blocked by adding the clause {⟨OI ≤ bI⟩, ⟨OD ≤ bD⟩} to the solver. Adding
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this refinement might help prune the search space quicker and therefore speed up finding
Pareto-optimal solutions.

4.3.3 Domain-Specific Solution Blocking

If multiple representatives of the same Pareto point are of interest, the procedure EnumSols

needs to block all obtained solutions in order to enumerate all solutions corresponding
to the same Pareto point. Naively, a found solution τ can be blocked with the clause
{¬l | l ∈ τ ∩ lit(F orig)}, where F orig is the original formula of the instance without any
clauses added by the algorithm. In later sections we give examples of how domain-specific
knowledge can be used in order to derive stronger clauses that block not only a specific
solution obtained, but also other, symmetric solutions.

4.3.4 Bound Hardening

Because the values for OD(τ) monotonically decrease while the algorithm progresses, this
information can be passed on to the SAT solver for it to be able to draw logical conclusions
from it. This is done by adding the literal ⟨OD ≤ b⟩ as a unit clause, as soon as the
algorithm has verified that all remaining Pareto-optimal solutions τ o have OD(τ o) ≤ b.
Bound hardening could also be done for OI, since it is known that the corresponding
objective values will monotonically increase during the search. However, as mentioned in
Section 2.3, the way BiOptSat uses totalizers, only upper bounds can be enforced with
them. In preliminary experiments, we found that the advantage of bound hardening for
the increasing objective does not justify the additional clauses added by building the full
totalizer. For this reason, bound hardening is only employed for the decreasing objective.

4.3.5 Refinements to Core-Guided Variants

As further detailed in Chapter 5, our implementation of the BiOptSat variants MSU3 and
OLL make use of refinements commonly used in core-guided MaxSAT solving. More specific-
ally, we employ core minimization [45] (either exact or heuristic) and core exhaustion [45,
116]. Additionally, we consider a disjoint core extraction phase [56].

Given a core κ returned by the SAT solver, heuristic core minimization refers to reinvoking
the SAT solver with {¬l | l ∈ κ} as the assumptions hoping that the solver returns a
smaller set of assumptions. Exact core minimization refers to iteratively finding a minimal
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unsatisfiable subset by attempting to remove each assumption separately. Core exhaustion
is an OLL-specific technique that seeks to improve the upper bound of each totalizer being
added. For this, it increases the bound and checks if the SAT query is still unsatisfiable. A
disjoint core phase refers to iteratively invoking the SAT solver in order to extract several
disjoint sets of objective literals to add to the totalizer (when using MSU3) or build new
totalizers over (when using OLL).



5 Experiments

We implemented all variants and refinements of BiOptSat described in Chapter 4 in
C++. Our implementations of MSU3 and OLL were inspired by their implementations in
Open-WBO v2.1 [117], the other variants were implemented from scratch. We used the
state-of-the-art [118] SAT solver CaDiCaL v1.5.2 [119]. Our implementation is available
in open source at https://bitbucket.org/coreo-group/bioptsat/. We compare the
performance of this implementation to that of P -minimal, ParetoMCS and Seesaw. To
the best of our knowledge, there is no general implementation of P -minimal and Seesaw
publicly available. Therefore, we also implemented P -minimal and Seesaw from scratch,
including them in our implementation.

In terms of refinements (recall Section 4.3), in our implementation, the core-guided variants
of BiOptSat use heuristic core minimization by default. Dominated solutions are not
blocked in SAT-UNSAT. As an additional parametric detail, in its default MSHybrid is
configured to switch between MSU3 and SAT-UNSAT once 70% of the literals in OI have been
added to Tot(Act).

We empirically evaluate the relative runtime performance of the BiOptSat variants against
the three competing approaches, as well as the impact of the specific refinements (recall
Section 4.3) to BiOptSat on their runtime performance. This comparison is done for
the two tasks of finding a single representative solution per Pareto point and enumerating
all Pareto-optimal solutions. We also investigate how much CPU time is spent in the
Minimize-Inc compared to the Solution-Improving-Search subroutine of BiOptSat.

All experiments were run on 2.60-GHz Intel Xeon E5-2670 machines with 64-GB RAM in
RHEL under a 1.5-hour per-instance time and 16-GB memory limit.

5.1 Benchmarks

We empirically evaluate the performance of BiOptSat and the competing approaches on
two bi-objective optimization problems: learning interpretable decision rules from data
and bi-objective set covering.

https://bitbucket.org/coreo-group/bioptsat/
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5.1.1 Learning Interpretable Decision Rules

Recently, a variety of SAT and MaxSAT-based approaches for learning interpretable
classifiers from data [11–14, 17, 31, 32] have been developed. The two objectives of
minimizing size (the smaller, the more interpretable) and classification error (when there is
no perfect classifier, as typical for real-world data) are conflicting, hence naturally giving
rise to bi-objective optimization problems. Here we consider learning of interpretable
decision rules as a representative benchmark domain from this line of work, building
on the encoding presented by Malioutov and Meel [11]. In short, a decision rule is a
binary classifier in the form of a CNF formula over Boolean features. The result of the
formula evaluated on the features of a data sample is the binary classification assigned by
the classifier to this sample. Since MaxSAT only allows for a single objective, in [11] a
linear combination of the two objectives, using a parameter λ ≥ 0, was proposed. This
is equivalent to the so-called weighted sum method [70]. While this allows for finding a
Pareto-optimal decision rule under a specific value of λ, MaxSAT solving multiple times
under different choices of λ does not guarantee finding a representative Pareto-optimal
decision rule for each Pareto point [37, 70]. In contrast, here we address directly the
problem of computing all Pareto-optimal solutions w.r.t. the two objectives.

Example 5.1. Consider the sample dataset shown on the right
with features x1 and x2, class label y and three samples. Two
example decision rules are r1 = (x1), r2 = (x1 ∧ x2). Rule r1

has size 1 and classification error 1, while r2 has size 2 and
classification error 0. Both, r1 and r2, are Pareto-optimal w.r.t
size and classification error.

x1 x2 y

1 1 1
0 1 0
1 0 0

For a given set of n data samples over m features, the encoding presented in [11] uses two
sets of variables: sj

l for l = 1, . . . , k and j = 1, . . . , m, and ηi for i = 1, . . . , n, for a specific
number k of clauses in the decision rules to be learned. The interpretation of the variables
is that sj

l = 1 if and only if the jth feature is included in the lth clause of the decision rule,
and ηi = 1 if the ith data sample is misclassified. We represent the sample with index i

with a Boolean class label yi and the Boolean features xj
i , where j = 1, . . . , m. With this,

the encoding is

¬ηi → (yi ↔
k∧

l=1

m∨
j=1

(xj
i ∧ sj

l )), for i = 1, . . . , n.

We employ this encoding as F , literals sj
l as OI and literals ηi as OD. The task in this

benchmark is therefore to find Pareto-optimal solution w.r.t. the size of the decision rule
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(measured as the number of literals in the rule) and its classification error. In preliminary
experiments, we found that choosing the objectives as described here leads to better
performance than using classification error as the increasing objective.∗

Since decision rules in CNF contain many symmetric solutions obtained by changing the
order of clauses in the rule, we add additional clauses to the encoding to break these sym-
metries. The idea behind the symmetry breaking is that the bit-strings τ(s1

l )τ(s2
l ) . . . τ(sm

l )
are forced to be in lexicographic ordering. In more detail, additionally to the s variables,
we introduce variables ej

l for j = 1, . . . , m and l = 2, . . . , k that represent whether the
bit-strings of the clauses with index (l−1) and l are equal for the first j bits. The semantics
of this representation are encoded as follows:

e1
l ↔ (s1

l−1 ↔ s1
l ) and

ej
l ↔ (ej−1

l ∧ (sf
l−1 ↔ sj

l )) for j = 2, . . . , m.

The lexicographic ordering is then enforced by adding the constraints

¬e1
l → (s1

l−1 ∧ ¬s1
l−1), and

(ej−1
l ∧ ¬ej

l )→ (sj
l−1 ∧ ¬sj

l ) for j = 2, . . . , m,

enforcing that the bit with the smallest index in which the clauses differ should be 1 in the
clause with index (l − 1) and 0 in the clause with index l.

Example 5.2. Consider the rule r2 = (x1∧x2) for the data in Example 5.1. It consists of
two clauses, C1 = x1 and C2 = x2. In a solution τ to the encoding, C1 will be represented
as the bit-string τ(s1

l )τ(s2
l ) = 10 and C2 as τ(s1

l )τ(s2
l ) = 01. Without symmetry breaking,

either τ1 = {s1
1,¬s2

1,¬s1
2, s2

2} or τ2 = {¬s1
1, s2

1, s1
2,¬s2

2} would be valid solutions, even
though they both map to r2. The symmetry-breaking clauses enforce that the bit-string
representing C1 precedes the bit-string representing C2. Therefore, only τ1 is a feasible
solution.

As the basis of our benchmark instances, we used 24 standard UCI [120] and Kaggle (https:

//www.kaggle.com) benchmark datasets, including ones used in the original evaluation of
the encoding [11]; see Appendix A for details. We independently at random sampled
subsets of n ∈ {50, 100, 1000, 5000, 10000} data samples from the datasets, four of each
size (when applicable), resulting in a total of 372 datasets. The datasets were discretized

∗This might be because the cores that can be extracted from the size objective are more beneficial for
the search procedure.

https://www.kaggle.com
https://www.kaggle.com
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as in [11]: categorical features are one-hot encoded, continuous features discretized by
comparing to a collection of thresholds. All experiments on these datasets were run with
the encoding configured to learn CNF decision rules consisting of two clauses (k = 2).

When enumerating multiple solutions corresponding to the same Pareto point, the blocking
clauses for BiOptSat (as well as P -minimal compared to in the experiments) can be
strengthened to find solutions mapping to distinct rules: blocking over the variables sj

l is
sufficient and blocks multiple symmetric solutions that only differ in the assignment to
auxiliary variables. Further, making use of the algorithm-specific fact that BiOptSat is
guaranteed to enumerate Pareto-optimal solutions in order of increasing size, for BiOptSat
it is sufficient to block a solution over all sj

l that are assigned to false.

5.1.2 Bi-Objective Set Covering

In the set covering problem over sets S, a subset C of the set of elements {1, . . . , n} needs to
be chosen under the constraints that (i) C covers all sets in S, i.e., C ∩ S ̸= ∅, ∀S ∈ S, and
(ii) C is minimal regarding some objective. The bi-objective variant assigns each element e

two different cost values ce
1 and ce

2 where the two different objectives for the cover C are to
minimize cC

1 = ∑
e∈C ce

1 and cC
2 = ∑

e∈C ce
2. When encoding set covering into propositional

logic, every set S ∈ S forms one clause in the encoding, i.e., the clauses are {le | e ∈ S}
with le being a literal representing if element e is in C. Furthermore, the integer values for
the cost associated with element e can be represented by adding le to the objective set ce

times. Note that multi-objective set covering was also used originally as a benchmark for
evaluating P -minimal [28].

Example 5.3. Consider the sets S = {{a, b}, {b, d}} and costs ca
1 = cb

1 = cd
1 = ca

2 =
cd

2 = 1 and cb
2 = 5. The two covers C1 = {b} and C2 = {a, b} are Pareto-optimal with C1

having costs cC1
1 = 1 and cC1

2 = 5 and C2 costs cC2
1 = 2 and cC2

2 = 2.

We generated two types of bi-objective set covering problem instances:

(i) using a fixed probability p for an element appearing in a set (SetCovering-EP),

(ii) using fixed set cardinality s, with elements in a set chosen uniformly at random
without replacement (SetCovering-SC).

We generated both types of instances using combinations of the following parameters:
number of elements n ∈ {100, 150, 200}, number of sets m ∈ {20, 40, 60, 80}, element



5.2. COMPETING APPROACHES 41

probability p ∈ {0.1, 0.2} and set cardinality s ∈ {5, 10}. For each combination, we
generated five instances, leading to 120 instances of each type. The integer cost values c

for the two objectives were chosen uniformly at random from the range c ∈ [1, 100].

The blocking clauses used in BiOptSat for enumerating all Pareto-optimal solutions can
be strengthened also for set covering: due to the fact that BiOptSat is guaranteed to
enumerate the Pareto-optimal solutions so that one of the objectives will monotonically
decrease, in BiOptSat it is enough to block the solution over all le that are assigned to true.

5.2 Competing Approaches

We compare BiOptSat to the three algorithms overviewed in Section 3.4.1: P -minimal,
Seesaw and ParetoMCS. These algorithms were chosen because they are similar in that
they are (or, in the case of Seesaw, can be) SAT-based, and they solve the same task
of enumerating Pareto-optimal solutions. We implemented P -minimal and Seesaw using
CaDiCaL [119] as the SAT solver (similarly as for BiOptSat) and CPLEX v20.10 for
hitting set extraction. For ParetoMCS, we use the publicly-available Sat4j-based [40]
implementation (https://gitlab.ow2.org/sat4j/moco).

BiOptSat can be used to enumerate both a single representative solution for each Pareto
point and the full Pareto front. P -minimal can be extended to solve these same two tasks.
For Seesaw, as mentioned before, extending it to enumerating the full Pareto front seems
non-trivial, and for ParetoMCS, the given implementation only returns a single solution
per Pareto point. We therefore only compare to Seesaw and ParetoMCS on the task of
enumerating a single representative solution per Pareto point.

In our implementation we also extended P -minimal to the task of enumerating all solutions
in the Pareto front. For achieving this, we add a new relaxation variable r to the clause
added at each iteration for use as an assumption to enumerate all solutions at that Pareto
point: the next SAT solver query is done including the assumption ¬r, if a dominating
solution is found, the clause is made permanent, i.e., hardening it, by adding ¬r as a unit
clause. If no dominating solution is found, all solutions corresponding to the just discovered
Pareto point can be enumerated when removing the assumption ¬r—effectively removing
the clause that r appears in—by blocking every found solution and querying the solver
again until it returns UNSAT. Once all solutions for that Pareto point are enumerated, the
clause is hardened by adding ¬r as a unit clause. If the next solution found dominates the
previous one, we also harden the clause added in the previous iteration.

https://gitlab.ow2.org/sat4j/moco
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Example 5.4. Consider the same invocation of P -minimal as in Example 3.8. In order
to enumerate all solutions in the Pareto front, the clause added in the first iteration
is (⟨OI < 4⟩ ∨ ⟨OD < 4⟩ ∨ r1) and the solver is queried again with the assumptions
{⟨OI ≤ 4⟩, ⟨OD ≤ 4⟩,¬r1}. Since the solver will return a dominating solution, the clause
added is hardened by adding the unit clause ¬r1 to the solver. The second iteration is
modified similarly as the first, adding the relaxation variable r2. In the third iteration,
the added clause is (⟨OI < 2⟩ ∨ ⟨OD < 2⟩ ∨ r3) and the solver call with assumptions
{⟨OI ≤ 2⟩, ⟨OD ≤ 2⟩,¬r3} is unsatisfiable. Now, by iteratively querying the solver
with the assumptions {⟨OI ≤ 2⟩, ⟨OD ≤ 2⟩} and blocking all found solutions, the set of
solutions corresponding to the Pareto point (2, 2) are enumerated.

The implementation of ParetoMCS allows for optionally enabling stratification [78]. We
use stratification for a second variant of ParetoMCS, and refer to it as ParetoMCS-strat.

Since Seesaw needs to be instantiated for each task separately, we instantiated Seesaw for
learning interpretable decision rules by using misclassifications as the objective over which
optimization cores are extracted and a hitting set hs is found over these optimization cores.
In the second step, the number of literals in the smallest rule misclassifying the samples
in hs (or a subset of it) is found. This function is implemented as a solution-improving
search with a SAT solver. This instantiation was chosen because finding the smallest rule
misclassifying hs is an anti-monotone function and the refined version of core extraction
presented in the original paper [29] can therefore be used, making Seesaw feasible in the first
place. Furthermore, we implemented two more variants of Seesaw in which optimization
cores are extracted in the solution-improving search procedure by the SAT solver. The
final SAT query of solution-improving search will always be unsatisfiable; the core returned
by the solver for this call can be used as an optimization core for Seesaw. Optionally we
apply exact core minimization to these cores before using them in Seesaw.∗ These two
variants will be referred to as Seesaw-SAT and Seesaw-SAT-min.

5.3 Results

We turn to an overview of the empirical results. First, we present a runtime comparison
of the different approaches to bi-objective optimization for the task of finding a single

∗We found that heuristic core minimization leads to no significant improvement over no minimization
at all and therefore don’t include it.
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Figure 5.1: Runtime comparison between variants of BiOptSat and competing approaches for learning
interpretable decision rules; enumeration of a single representative solution per Pareto point. The plot on
the right shows a magnification for comparing the best-performing approaches.

representative solution per Pareto point. Then, we show the same comparison for enu-
merating all Pareto-optimal solutions. Finally, we provide observations on the impact the
refinements presented in Section 4.3 have on the performance of BiOptSat.

5.3.1 Finding a Single Representative Solution per Pareto Point

For comparing the performance of the variants of BiOptSat presented in Section 4.2, P -
minimal, ParetoMCS and Seesaw, we first discuss at the results for learning a single decision
rule per Pareto point. Figure 5.1 shows the number of instances solved (horizontal axis)
for different per-instance time limits (vertical axis) for this task. The best-performing ap-
proaches are the BiOptSat variants MSHybrid, SAT-UNSAT, UNSAT-SAT and MSU3, solving
223 instances, while P -minimal solved 219 instances. All variants of BiOptSat outperform
P -minimal to some extent. Seesaw and ParetoMCS are very clearly outperformed by all
other approaches. Even the best variant of Seesaw (Seesaw-SAT-min) only solves 136
instances within the resource constraints. ParetoMCS performs even worse, solving only
34 instances without and 32 with stratification.

Next, we consider a similar comparison for the bi-objective set covering benchmarks. In
this comparison, only the Seesaw variants with SAT core extraction are included since the
default Seesaw core extraction strategy cannot be applied for this problem. Figure 5.2
shows the number of solved instances given a per-instance time limit for the two generated
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Figure 5.2: Runtime comparison between variants of BiOptSat and competing approaches for bi-
objective set covering problem; enumeration of a single representative solution per Pareto point.

sets of bi-objective set covering instances. ParetoMCS with and without stratification,
as well as Seesaw-SAT did not manage to solve any of the set covering instances. The
best-performing variant of BiOptSat is again MSHybrid, considerably outperforming
P -minimal and Seesaw-SAT-min: P -minimal solved 71 (respectively 38) fixed element
probability (respectively set cardinality) instances, Seesaw-SAT-min solved 60 (respectively
38), whereas MSHybrid solved 83 (respectively 40) instances. For this application, not all
variants of BiOptSat outperformed P -minimal: MSU3 and OLL were outperformed for
both instance variants while SAT-UNSAT and UNSAT-SAT were only outperformed for the
instances generated with fixed set cardinality. The good performance of Seesaw-SAT-min
on these instances might be explained by the fact that the weights for one of the objectives
in Seesaw are handled by an integer linear programming solver, rather than in propositional
logic.

The numbers of solved instances for all approaches are summarized in Table 5.1. The
best-performing approach for each benchmark is highlighted in bold. MSHybrid is the
best-performing BiOptSat variant overall, outperforming P -minimal in all cases. For
more details, Figure 5.3 (left) shows a per-instance runtime comparison between MSHybrid

and P -minimal. We note that P -minimal did not uniquely solve any instance. In general,
MSHybrid was outperformed by P -minimal on only 31 instances while MSHybrid solved
297 instances in less time. Both, BiOptSat and our implementation of P -minimal make
full incremental use of the SAT solver, never resetting it during search. This suggests that
the advantage BiOptSat has over P -minimal lies in the search being more structured.
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Table 5.1: Solved instances by approach and benchmark domain. Results for both tasks, finding a single
solution per Pareto point (single) and enumerating all Pareto-optimal solutions (all).

Decision Rules SetCovering-EP SetCovering-SC
Algorithm single all single all single all

SAT-UNSAT 223 215 77 75 35 35
UNSAT-SAT 223 215 71 71 29 29
MSU3 223 215 71 70 36 36
OLL 222 213 58 58 34 34
MSHybrid 223 215 83 81 40 40

P -minimal 219 213 71 68 38 26

Seesaw 123 – – – – –
Seesaw-SAT 42 – 0 – 0 –
Seesaw-SAT-min 136 – 60 – 38 –

ParetoMCS 34 – 0 – 0 –
ParetoMCS-strat 32 – 0 – 0 –

100 1 000

100

1 000

30 5 400
30

5 400

P -minimal (s)

M
S
H
y
b
r
i
d
(s
)

SetCovering-EP

SetCovering-SC

Decision Rules

100 1 000

100

1 000

30 5 400
30

5 400

Minimize-Inc (s)

S
o
l
u
t
i
o
n
-
I
m
p
r
o
v
i
n
g
-
S
e
a
r
c
h
(s
)

Figure 5.3: Left: Runtime comparison between P -minimal and BiOptSat in the MSHybrid variant.
Right: Time (in seconds) spent in the Minimize-Inc and Solution-Improving-Search subroutines for
BiOptSat in the MSHybrid variant. Both plots are for enumeration of a single representative per Pareto
point.
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Figure 5.3 (right) shows how much time is spent in the Minimize-Inc compared to the
Solution-Improving-Search subroutine for the MSHybrid variant of BiOptSat. The arc
that forms in this plot is the time limit border, which is where the sum of both axes equals the
5 400-second per-instance time limit. It can be seen that for the decision rule instances, in
general more time is spent in the Solution-Improving-Search subroutine, while for the set
covering instances, more time is spent in the Minimize-Inc subroutine. This indicates that
the answer to the question of which step of the lexicographic minimization is harder depends
notably on the instance. Furthermore, we note that the two objectives for the set covering
instances are both generated randomly with the same procedure, therefore swapping the
objectives does not change the instances. For the decision rule instances, the objectives are
structurally different, but—as mentioned previously—preliminary experiments have shown
that this configuration of the objectives leads to better performance.

5.3.2 Enumerating All Pareto-Optimal Solutions

Next we compare the performance for learning all Pareto-optimal interpretable decision
rules. Figure 5.4 shows the results for this task, presented in the same way as in Figure 5.1.
For this task, the BiOptSat variants SAT-UNSAT, UNSAT-SAT, MSU3 and MSHybrid all
performed the best, solving 215 instances each. With this, each of them outperforms
P -minimal, which solved 213 instances. The OLL variant of BiOptSat solved the same
number of instances as P -minimal. Note that Seesaw and ParetoMCS cannot be used for
enumerating all Pareto-optimal solutions and are therefore excluded for these experiments.

Turning to the same comparison for bi-objective set covering, as seen from Figure 5.5,
MSHybrid is the best-performing approach also here. For the instances with fixed set
cardinality, all BiOptSat variants solved at least as many instances as P -minimal, for the
instances with fixed element probability only OLL performed worse than P -minimal. The
best-performing variant, MSHybrid, solved 81 (respectively 40) of the fixed element prob-
ability (respectively set cardinality) instances while P -minimal solved 68 (respectively 26).

Table 5.1 summarizes the number of solved instances for all approaches applicable to
this task. It can be seen that MSHybrid is the best-performing approach for this task as
well. A per-instance runtime comparison between MSHybrid and P -minimal for the task of
enumerating all Pareto-optimal solutions is shown in Figure 5.6 (left). P -minimal did also
not uniquely solve any instance for enumerating all Pareto-optimal solutions. Furthermore,
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Figure 5.6: Left: Runtime comparison between P -minimal and BiOptSat in the MSHybrid variant;
enumeration of all Pareto-optimal solutions. Right: Runtime comparison between enumerating a single
representative vs. all solutions per Pareto point with MSHybrid.

MSHybrid was outperformed by P -minimal on 71 instances while MSHybrid outperformed
P -minimal on 257 instances.

Comparing the number of solved instances in Table 5.1, we can see that the performance
difference between BiOptSat and P -minimal is greater when enumerating all Pareto-
optimal solutions. Furthermore, Figure 5.6 (right) shows a runtime comparison between
enumerating a single representative solution per Pareto point and enumerating all Pareto-
optimal solutions with MSHybrid. Overall, BiOptSat scales well also for enumerating
all Pareto-optimal solutions, although there is an overhead when the number of solutions
required to be enumerated grows significantly; this is the case for learning interpretable
decision rules, where some instances have more than 10 000 solutions per Pareto point.
This is in contrast to the set covering instances, which tend to have only a single (of few)
solutions per Pareto point. The observation that there are fewer solutions per Pareto point
for the set covering instances can be intuitively explained by the weighted objectives which
make it significantly less likely that two distinct solutions have identical objective function
values.

5.3.3 Impact of Refinements

Finally, we evaluated the impact of the refinements proposed in Section 4.3 on the runtime
efficiency of the best-performing approach, MSHybrid. As the first refinement considered, we
evaluate the impact of lazily building the totalizer for the decreasing objective. Figure 5.7
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Figure 5.7: Instance runtime comparisons for the two refinements lazily building the totalizer for the
decreasing objective (left) and exact core minimization (right).

(left) shows a runtime comparison between MSHybrid with and without lazy building of
Tot(OD). It can be seen that for learning interpretable decision rules, this refinement
has no evident impact. This is to be expected since for these benchmarks, the literals
from OD do not appear in OI, so Tot(OD) cannot be lazily built. For the set covering
instances with fixed element probability, the impact of this refinement is small and tends
to be slightly negative for most instances. However, for fixed set cardinality set covering,
we see a strong positive effect.

Next, we detail the impact of different core minimization strategies. By default, MSHybrid

employs heuristic core minimization. In Figure 5.7 (right), the performance of this config-
uration is compared to using exact core minimization instead. Heuristic core minimization
appears to have a positive effect for the task of learning interpretable decision rules as
well as for harder set covering instances. However, the effect is smaller than that of lazily
building Tot(OD).

Figure 5.8 (left) shows the effect of blocking dominated solutions in the SAT-UNSAT phase
of MSHybrid. The impact of this refinement is negligible on all benchmarks, although there
are three instances of the set covering benchmarks with fixed element probability that
were only solved when not blocking dominated solutions, giving this configuration a slight
advantage. On the decision rule instances, while slight positive effects of the refinement
can be seen, the effect is not strong enough to enable solving additional instances.

As the last refinement considered, we consider adding a disjoint core extraction phase
to the MSU3 phase of MSHybrid. Figure 5.8 shows the impact of adding this refinement
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Figure 5.8: Instance runtime comparisons for the two refinements blocking dominated solutions (left)
and disjoint core extraction (right).

to the default configuration of MSHybrid. It can be seen that adding the disjoint phase
does not result in a clear positive or negative effect. However, the impact per instance
varies a lot more compared to the impact of blocking dominated solutions. The only clear
negative impact can be seen on three instances for learning interpretable decision rules.
The strongest outlier is an instance that was solved by the configuration without a disjoint
phase in under 500 seconds but only barely under the given time limit of 5 400 seconds by
the configuration with a disjoint phase. At present, it is unclear to us why for this specific
this refinement has such a strong negative effect.



6 Conclusions

We presented BiOptSat, an algorithm for exact bi-objective optimization under Pareto
optimality. The structured search of BiOptSat builds on algorithms for maximum
satisfiability (MaxSAT) and makes incremental use of a solver for propositional satisfiability
(SAT). BiOptSat can be used to solve three tasks for NP-hard bi-objective optimization
problems encoded in propositional logic: finding a single Pareto-optimal solution, finding
one representative solution for each Pareto point, and enumerating all Pareto-optimal
solutions.

We presented four variants of BiOptSat that are based on algorithms proposed for
MaxSAT (SAT-UNSAT, UNSAT-SAT, MSU3, and OLL), as well as MSHybrid, a novel hybrid
between MSU3 and SAT-UNSAT. The main difference between the BiOptSat variants and
their MaxSAT inspirations is that an additional constraint over the second objective
needs to be enforced during the optimization. An open-source implementation of all five
variants and two previously proposed SAT-based approaches is available. We compared
BiOptSat to three previously-proposed approaches: P -minimal [28], ParetoMCS [30],
and Seesaw [29]. We empirically evaluated the five variants of BiOptSat, comparing
them to the three competitors, on two benchmark domains: learning interpretable decision
rules [11] and bi-objective set covering. Additionally, we evaluated the algorithms for the
two tasks of finding one representative solution for each Pareto point, and of enumerating
all Pareto-optimal solutions. In the empirical evaluation we found that the MSHybrid

variant did not only outperform all other four variants of BiOptSat but also the three
competitors. MSHybrid achieves improved performance by combining advantages from the
MSU3 and the SAT-UNSAT MaxSAT algorithms. When enumerating all Pareto-optimal
solutions, the advantage of BiOptSat over its competitors is slightly more pronounced.
The good performance of BiOptSat is in part due to the incremental use of the SAT
solver, but—since P -minimal also makes fully incremental use of a SAT solver—more
important for the good efficiency is the structured nature of the search of BiOptSat.

We also evaluated refinements to the best-performing variant, MSHybrid. The refinements
found most impactful were lazily building the totalizer for the decreasing objective when
the two objectives share literals, and heuristic core minimization. Other refinements that



52 CHAPTER 6. CONCLUSIONS

did not show a significant impact on performance are blocking of solutions dominated by
candidates found during the search and the addition of a disjoint core extraction phase.

Going beyond the work presented in this thesis, it is likely that BiOptSat could be
further improved and evaluated. For example, the way weighted objectives are handled
in BiOptSat at the moment can be considered relatively naive. As shown empirically,
the performance of BiOptSat on weighted instances is already competitive. However,
applying more sophisticated ways of handling weights promises even better performance.
Additionally, a better understanding for what objective should be chosen as increasing to
achieve the best performance remains an interesting direction for further research.
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Appendix A Datasets Used for Decision Rule Learning

Table A.1 summarizes the datasets used in the empirical evaluations, including their origin
and statistics, as well as the sizes of CNF formulas obtained from them with the encoding
from Malioutov and Meel [11]. The original files were downloaded from the UCI Machine
Learning Repository [120] and from Kaggle (https://www.kaggle.com). We randomly and
independently sampled subsets of n ∈ {50, 100, 1000, 5000, 10000} data samples from the
datasets, four of each size (when applicable), resulting in a total of 372 datasets, and
discretized the data as in [11]: categorical features are one-hot encoded, continuous features
discretized by comparing to a collection of thresholds.

In addition to the name and the source of the datasets, the table shows the number of data
samples as well as the number of features before and after discretization. The last two
columns give some statistics about the formulas generated with the encoding [11] for two
clauses based on the full datasets. We report both the number of clauses and the number
of variables in these formulas.

For the decision rule instances, the instance that took the longest time to solve that did not
time out for the MSHybrid variant was a subset of 100 samples of the Connect 4 dataset.
The formula of this dataset has 678 variables and 4152 clauses. The largest instance in
terms of the number of samples that our algorithm was able to find a representative for
every Pareto-point for was a subset of the Travel Insurance dataset with 10000 samples.
When looking at the number of features, the largest solvable dataset was a subset of the
Twitter dataset with 50 samples and 1511 discretized features.

https://www.kaggle.com
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