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Building on Boolean satisfiability (SAT) and maximum satisfiability (MaxSAT) solving algorithms,12

several approaches to computing Pareto-optimal MaxSAT solutions under multiple objectives have13

been recently proposed. However, preprocessing in (Max)SAT-based multi-objective optimization14

remains so-far unexplored. Generalizing clause redundancy to the multi-objective setting, we15

establish provably-correct liftings of MaxSAT preprocessing techniques for multi-objective MaxSAT16

in terms of computing Pareto-optimal solutions. We also establish preservation of Pareto-MCSes—the17

multi-objective lifting of minimal correction sets tightly connected to optimal MaxSAT solutions—18

as a distinguishing feature between different redundancy notions in the multi-objective setting.19

Furthermore, we provide a first empirical evaluation of the effect of preprocessing on instance sizes20

and multi-objective MaxSAT solvers.21
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1 Introduction32

Boolean satisfiability (SAT) solving [7] is arguably a noticeable success story of constraint pro-33

gramming. The impact of SAT solvers goes beyond merely deciding satisfiability. Incremental34

use of SAT solvers [13] today enables efficiently solving, e.g., hard optimization problems via35

maximum satisfiability (MaxSAT) [1]. While MaxSAT allows for finding optimal solutions in36

terms of a single objective function, practical applications have motivated various algorithmic37

advances and non-trivial generalizations of MaxSAT solving techniques to optimization under38

multiple objectives [41, 38, 10, 25, 20, 11]. These algorithms allow for computing one or39

several of the so-called Pareto-optimal solutions of multi-objective MaxSAT instances, i.e.,40

solutions in which no objective can be improved without negatively affecting the value of41

another objective.42
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44:2 Preprocessing in SAT-Based Multi-Objective Combinatorial Optimization

Preprocessing has become a central part of the SAT solving pipeline [8], pruning the43

instance through applying complex combinations of different inference and simplification44

rules based on fundamental notions of (clause) redundancy. Motivated by its success in45

SAT, preprocessing in MaxSAT solving, through both extensions of SAT-based simplification46

techniques [3], and novel MaxSAT-specific techniques [5, 23, 37], is becoming increasingly47

popular and better understood, especially through recent work generalizing fundamental48

notions of redundancy in SAT [28, 27, 21, 22] to MaxSAT [24]. The MaxSAT liftings of49

redundancy notions allow for uniformly establishing the formal correctness of a wide range50

of MaxSAT preprocessing techniques [24, 4].51

The advances in SAT and MaxSAT preprocessing, together with the recent advances in52

extending the reach of SAT-based approaches to multi-objective combinatorial optimization,53

call for studying fundamental and practical aspects of preprocessing in multi-objective settings.54

So-far preprocessing for (Max)SAT-based multi-objective optimization remains unexplored,55

with several open research questions. Developing correct liftings of MaxSAT preprocessing56

techniques to multi-objective settings, where Pareto-optimal solutions are sought for, calls for57

redundancy notions in order to uniformly capture the correctness of such liftings. In analogy58

to work analysing the power of different redundancy notions in SAT and more recently59

in MaxSAT, understanding the relationship between different redundancy notions in the60

multi-objective setting is also fundamentally relevant. From a more practical perspective,61

the effect of preprocessing for multi-objective problems in terms of simplifications achieved62

and solver runtimes has also not been thoroughly explored.63

We make contributions to each of these questions. We provide redundancy notions for64

the multi-objective setting based on the notions of reconstructible and literal-reconstructible65

clauses, allowing for establishing the correctness of a large number of preprocessing techniques66

for multi-objective MaxSAT in terms of computing Pareto-optimal solutions. Additionally, we67

identify the preservation of Pareto-MCSes (the multi-objective lifting of minimal correction68

sets tightly connected to Pareto-optimal solutions [40]) as a distinguishing feature between69

the two proposed redundancy notions. We also consider liftings of MaxSAT preprocessing70

techniques which alter in a controlled way the objective functions at hand and thereby71

cannot be directly captured by the clause redundancy notions. Putting these preprocessing72

techniques lifted to the multi-objective setting into practice, we provide a first preprocessor73

implementation for multi-objective MaxSAT, and perform a first empirical evaluation of the74

effect of preprocessing both in terms of instance size reductions achieved and runtimes of75

recently proposed approaches to multi-objective MaxSAT solving.76

2 Multi-Objective MaxSAT77

For a Boolean variable x there are two literals, x and ¬x. A clause C is a set (or disjunction)78

of literals and a (CNF) formula F a set (or conjunction) of clauses. A (truth) assignment τ79

assigns variables to truth values 0 (false) or 1 (true). Assignments are extended to literals l,80

clauses C, and formulas F , in the standard way: τ(¬l) = 1 − τ(l), τ(C) = max{τ(l) | l ∈ C},81

and τ(F ) = min{τ(C) | C ∈ F}, defining semantics for CNF formulas. An assignment τ is82

a solution to a CNF formula F if τ(F ) = 1; τ is complete for F if τ assigns a value to all83

variables in F , and otherwise partial for F . With slight abuse of notation, an assignment τ84

can be viewed as the set of the literals it assigns to 1. Then τ(x) = 1 (τ(x) = 0) is shorthand85

for x ∈ τ (¬x ∈ τ), ¬C for {¬l | l ∈ C}, and τ ⊃ ¬C means that τ falsifies a clause C.86

We focus on the following natural generalization of the maximum satisfiability (MaxSAT)87

problem to multi-objective combinatorial optimization [42, 17, 15]. An instance I = (F, O) of88
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multi-objective MaxSAT (MO-MaxSAT) consists of a CNF formula F , the clauses of which89

need to be satisfied by any solution to the instance, and a tuple O = (O1, . . . , Op) of p linear90

objective functions with positive coefficients over literals (or equivalently, pseudo-Boolean91

expressions) under minimization. We denote the set of literals appearing in Oi by Bi(I)92

and the set of literals appearing in at least one of the objectives by B(I) =
⋃p

i=1 Bi(I).93

Furthermore, we denote by ci(l) the coefficient of literal l in Oi. If l does not appear in Oi,94

then ci(l) = 0.95

The cost O(τ) = (O1(τ), . . . , Op(τ)) of a solution τ to I (i.e., a solution to F ) is obtained96

by evaluating each objective under τ . If τ is not a solution of F , we let O(τ) = (∞, . . . , ∞).97

As a central notion of optimality in the multi-objective setting in general, we focus on98

Pareto-optimality, which is based on the following domination relation between solutions.99

▶ Definition 1 ((Weak) Domination). Consider two solutions τ1 and τ2 with costs O(τ1) =100

(O1(τ1), . . . , Op(τ1)) and O(τ2) = (O1(τ2), . . . , Op(τ2)). The solution τ1 weakly dominates τ2101

(denoted τ1 ⪯ τ2) if Oi(τ1) ≤ Oi(τ2) holds for all i = 1, . . . , p. If additionally Oi(τ1) < Oi(τ2)102

for some i, then τ1 dominates τ2 (denoted τ1 ≺ τ2).103

Intuitively, the solution τ1 weakly dominates another solution τ2 if it is not worse in any ob-104

jective. We use τ1 ̸⪯ τ2 to denote that τ1 does not weakly dominate τ2. Note that domination105

is not a total order on solutions, i.e., τ1 ̸⪯ τ2 does not generally imply τ2 ≺ τ1 or τ2 ⪯ τ1.106

A partial assignment τp dominates another (partial) assignment δp if for every extension107

δ ⊃ δp there is an extension τ ⊃ τp that dominates δ. A solution τ to an MO-MaxSAT108

instance I is Pareto-optimal1 if τ is not dominated by any other solution to I.109

The notion of the non-dominated set of an MO-MaxSAT instance characterizes the110

solutions of interest in terms of their (non-dominated) costs.111

▶ Definition 2 (Non-dominated set). The non-dominated set non-dominated(I) = {O(τ) |112

τ is Pareto-optimal} of an MO-MaxSAT instance I = (F, O) consists of the costs of the113

Pareto-optimal solutions of I.114

Practical algorithm for computing the non-dominated set of a given MO-MaxSAT instance115

also provide for each cost o ∈ non-dominated(I) a Pareto-optimal solution having cost116

o. It is worth noting that for an o ∈ non-dominated(I) there may be more than one117

Pareto-optimal solution with cost o and that for a single-objective MaxSAT instance I the118

set non-dominated(I) consists of the optimal (minimum) cost of I.119

3 Clause Redundancy in MO-MaxSAT120

Preprocessing an MO-MaxSAT instance I refers to the iterative application of a set of prepro-121

cessing techniques (inference/simplification rules) on I, resulting in a preprocessed instance122

P(I) for which non-dominated(I) = non-dominated(P(I)). In other words, correctness of123

preprocessing requires that the non-dominated set of the original I does not change under124

the preprocessing techniques applied.125

As fundamental notions for capturing, establishing the correctness of, and analysing the126

strengths of different MO-MaxSAT preprocessing techniques, we propose several (clause)127

redundancy properties in MO-MaxSAT. These properties can be viewed as multi-objective128

counterparts of earlier proposed redundancy notions in SAT [28, 27, 21, 22] and most recently129

1 Sometimes in the literature also referred to as efficient or non-inferior [14].

CP 2023



44:4 Preprocessing in SAT-Based Multi-Objective Combinatorial Optimization

in MaxSAT [24], with similar motivations. In contrast to SAT (where clause redundancy130

notions are required to preserve satisfiability) and similarly as in MaxSAT, clause redundancy131

notions are required to preserve optimal costs. Compared to MaxSAT, however, the multiple132

objectives and Pareto optimization require additional care.133

For an MO-MaxSAT instance I = (F, O) and a clause C, I ∧ C = (F ∧ C, O) is the134

instance obtained by adding C to I. We begin with a general notion of redundancy for the135

problem of computing the non-dominated set in MO-MaxSAT.136

▶ Definition 3 (Redundant clauses). A clause C is redundant wrt an MO-MaxSAT instance137

I if non-dominated(I) = non-dominated(I ∧ C).138

Note that this definition does not require that all Pareto-optimal solutions should be preserved.139

We propose two refined redundancy notions which turn out to differ in strength and thereby140

in terms of the preprocessing techniques they capture. The notions are based on the following141

alternative characterization of redundancy that essentially states that a clause C is redundant142

if every solution that falsifies it is weakly dominated by some solution that satisfies C.143

▶ Proposition 4. A clause C is redundant wrt an instance I = (F, O) iff, for any solution144

τ ⊃ ¬C to I that falsifies C, there is a witnessing assignment (or simply witness) ωτ for145

which ωτ (C) = 1 and ωτ ⪯ τ .146

Proof. We prove each of the directions separately.147

C is redundant ⇒ a witness exists: Consider a solution τ ⊃ ¬C to I. Then there148

exists a Pareto-optimal solution δ ⪯ τ (we can pick δ = τ if τ is Pareto-optimal). Since149

non-dominated(I) = non-dominated(I ∧ C) (as C is redundant), there is a solution ωδ to150

I ∧ C with O(τ) = O(ωδ). Such ωδ satisfies C and weakly dominates δ. Thus, it also weakly151

dominates τ , fulfilling the requirements of the proposition.152

A witness exists ⇒ C is redundant: To show that C is redundant according to Defin-153

ition 3 we show that non-dominated(I ∧ C) = non-dominated(I). For the direction154

non-dominated(I ∧ C) ⊂ non-dominated(I), note that every Pareto-optimal solution τ155

to I ∧ C is also a solution to I. Furthermore, τ is also Pareto-optimal wrt I. If this was156

not the case, by the assumption the solution δ dominating τ wrt I would have a witness157

ωδ dominating τ wrt I ∧ C. Since therefore every Pareto-optimal solution to I ∧ C is also158

Pareto-optimal wrt I, it follows that non-dominated(I ∧ C) ⊂ non-dominated(I).159

For the other direction consider an element o ∈ non-dominated(I) and let τ be a Pareto-160

optimal solution to I for which O(τ) = o. For the interesting case, assume τ ⊃ ¬C, i.e.,161

that it falsifies C. Then by the assumption τ is weakly dominated by some witness ωτ
162

that satisfies C. Now O(τ) = O(ωτ ) = o (as otherwise τ would not be Pareto-optimal)163

demonstrating that o ∈ non-dominated(I ∧ C) and thus that C is redundant. ◀164

The (weakly) dominating witness ωτ guaranteed by Proposition 4 for any redundant165

clause C might differ depending on the specific solution τ that falsifies C. The redundancy166

notions of reconstructible and literal-reconstructible clauses we propose next are based on167

placing stronger requirements on this witness.168

▶ Definition 5 (Reconstructible clauses). A clause C is reconstructible on the (partial)169

assignment ω wrt an MO-MaxSAT instance I if (i) ω(C) = 1, and (ii) (τ \ ¬ω) ∪ ω ⪯ τ for170

every solution τ ⊃ ¬C to I.171

In words, a clause C is reconstructible wrt an MO-MaxSAT instance I if there is a single172

witnessing assignment ω that satisfies C and weakly dominates all solutions τ that do not.173
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Moreover, enforcing the partial assignment ω in any such solution τ allows for efficiently174

obtaining a solution to I that satisfies C and weakly dominates τ . For the corner case, note175

that if there are no solutions to I that falsify C, then C is reconstructible on any witness.176

The fact that reconstructible clauses are redundant follows directly from Proposition 4.177

The next example demonstrates that the converse does not hold. Central to the example is178

to note that a direct consequence of Definition 5 is that if C is reconstructible on the partial179

assignment ω, then ω weakly dominates the partial assignment ¬C.180

▶ Example 6. Let I = (F, (O1, O2)) be an MO-MaxSAT instance with F = (a1 ∨ a2) ∧181

(b1 ∨ b2) ∧ (a1 ∨ b1) ∧ (a1 ∨ b2) ∧ (a2 ∨ b1) ∧ (a2 ∨ b2), O1 = a1 + a2, and O2 = b1 +182

b2. Then non-dominated(I) = {(1, 2), (2, 1)}, and the Pareto-optimal solutions are τ1 =183

{a1, ¬a2, b1, b2}, τ2 = {¬a1, a2, b1, b2}, τ3 = {a1, a2, ¬b1, b2}, and τ4 = {a1, a2, b1, ¬b2}.184

Consider the clause C = (¬a2 ∨ ¬b2). Since τ1 and τ4 are solutions to F ∧ C, adding C185

does not change the non-dominated set of the instance. Thus, C is redundant wrt I. To186

see that C is not reconstructible we show that no partial assignment ω that satisfies C187

weakly dominates ¬C. There are two possible candidates for such ω (as C contains two188

literals): ω1 = {¬a2} and ω2 = {¬b2}. The only solution of I that ω1 can be extended to is189

τ1. However, ¬C can be extended to τ3, which is not weakly dominated by τ1. Similarly,190

ω2 = {¬b2} does not weakly dominate τ2 ⊃ ¬C, showing that ω2 ̸⪯ ¬C.191

Contrasting Example 6, the next proposition shows that the notions of (clause) redundancy192

according to Definition 3 and reconstructible clauses according to Definition 5 coincide for193

single-objective MaxSAT instances that have solutions.194

▶ Proposition 7. For a single-objective MaxSAT instance I = (F, (O1)) with at least one195

solution τ and clause C, it holds that C is reconstructible for I iff C is redundant.196

Proof (sketch). For the non-trivial direction, assume that C is redundant. Then there is an197

optimal (minimum-cost) solution τo to I that satisfies C. As I only has a single objective,198

τo weakly dominates all solutions to I. Therefore, C is reconstructible on τo. ◀199

As a further notion of redundancy, we consider literal-reconstructible clauses as a special200

case of reconstructible clauses where the witness is required to consist of a single literal. In201

Section 4 we discuss properties that literal-reconstructible clauses specifically satisfy and202

overview in Section 5.1 preprocessing techniques that can be characterized by adding and203

removing literal-reconstructible clauses.204

▶ Definition 8 (Literal-reconstructible clauses). A clause C is literal-reconstructible wrt an205

instance I = (F, O) if either (i) all solutions to F satisfy C, or (ii) there is a non-objective206

literal l ∈ C \ B(I) s.t. if τ ⊃ ¬C is a solution to F , then τl = (τ \ {¬l}) ∪ {l} is a solution207

to F ∧ C. If condition (ii) holds, we say that C is literal-reconstructible on the literal l.208

Note that the definition of literal-reconstructible clauses does not explicitly require that209

τl weakly dominates τ , as this follows from l not being an objective literal. The following210

proposition states that literal-reconstructible clauses are redundant in terms of Definition 3.211

▶ Proposition 9. If a clause C is literal-reconstructible wrt an MO-MaxSAT instance212

I = (F, (O1, . . . , Op)), then non-dominated(I) = non-dominated(I ∧ C).213

Proof (sketch). For the interesting case, assume that there is a solution τ ⊃ ¬C to I that214

does not satisfy C. Let l ∈ C \ B(I) be the literal on which C is literal-reconstructible and215

consider the solution τl = (τ \ {¬l}) ∪ {l}. Then by the assumption τl is a solution to I ∧ C216

and as l /∈ B(I) we have that Oi(τl) ≤ Oi(τ) for all objectives, i.e., for each i = 1, . . . , p. As217

τl is a solution to both I and I ∧ C, the result follows. ◀218

CP 2023



44:6 Preprocessing in SAT-Based Multi-Objective Combinatorial Optimization

A clause that is literal-reconstructible on l is also reconstructible on the witness ω = {l}.219

The following example shows that the opposite does not hold in general, i.e., there are220

reconstructible clauses that are not literal-reconstructible.221

▶ Example 10. Consider the MO-MaxSAT instance I = (F, (O1)) with F = (a1 ∨ a2)222

and O1 = a1 + a2. The clause C = (¬a1) is reconstructible on the witness ω = {¬a1, a2}.223

The assignment τ = {a1, ¬a2} is a solution to F but does not satisfy C. The only literal224

l ∈ C \ B(I) is ¬a1, but ({a1, ¬a2} \ {a1}) ∪ {¬a1} = {¬a1, ¬a2} is not a solution to F ∧ C.225

It follows that C is not literal-reconstructible.226

The relative generality of these three MO-MaxSAT redundancy notion can be summarized227

as follows. For any MO-MaxSAT instance I, the set of redundant clauses Red(I) is a superset228

of the set of reconstructible clauses Rec(I), and Rec(I) is a superset of the set of literal-229

reconstructible clauses LRec(I). Furthermore, there are clauses that are reconstructible but230

not literal-reconstructible (i.e., there is an instance I for which Rec(I) ⊋ LRec(I)), and231

clauses that are redundant (in terms of Definition 3) that are not reconstructible (i.e., there232

is an instance I ′ for which Red(I ′) ⊋ Rec(I ′)). In contrast to single-objective MaxSAT, the233

last statement holds also for instances that have solutions as for a single objective instance234

I ′′ we have that Red(I ′′) ̸= Rec(I ′′) if and only if I ′′ does not have solutions.235

As a side-remark, literal-reconstructible clauses are related to so-called cost literal propaga-236

tion redundant clauses [24] recently proposed for (single-objective) MaxSAT: any cost literal237

propagation redundant clause is literal-reconstructible under a single objective. The opposite238

holds only when conditions (i) and (ii) in Definition 8 can be deterministically checked239

by standard Boolean constraint propagation on clauses (i.e., unit propagation). Intuit-240

ively, literal-reconstructible clauses extend and slightly generalize the concept of cost literal241

propagation redundant clauses for the multi-objective setting.242

4 Redundancy and Pareto-MCSes243

We move on to analysing the effect that adding (literal-)reconstructible clauses to an MO-244

MaxSAT instance has on the solution space in terms of so-called Pareto minimal correction245

sets (Pareto-MCSes) [40, 41], that—informally speaking—correspond to subset-minimal sets246

of objective literals that are assigned to 1 by at least one Pareto-optimal solution.247

▶ Definition 11 (Pareto-MCS). Consider an MO-MaxSAT instance I = (F, O). A subset248

M ⊂ B(I) of objective literals is a correction set if there is a solution τ of I that assigns249

τ(l) = 0 for every objective literal l not appearing in M . M is a minimal correction set250

(MCS) (or multi minimal correction subset as in [40]) if no M ′ ⊊ M is a correction set.251

Finally, M is a Pareto-MCS if each solution τ that assign τ(l) = 0 for every l ∈ B(I) \ M is252

Pareto-optimal. The set ParetoMCS(I) consists of the Pareto-MCSes of I.253

For some intuition, note that assigning an objective literal to 1 can be seen as falsifying254

a soft constraint. If M is an MCS or Pareto-MCS, then for any solution with τ(l) = 0 for255

every literal not in M we also have τ(l′) = 1 for every literal l′ in M . From this point of256

view, these definitions of MCSes align with the (arguably more classical) ones in terms of257

subset-minimal sets of soft constraints falsified by some solution. Specifically, if I only has a258

single objective, this definition is identical to MCSes in single-objective MaxSAT [34].259

The relationship between Pareto-optimal solutions, Pareto-MCSes and elements of the260

non-dominated set is not one-to-one. For a Pareto-MCS M of an MO-MaxSAT instance261

I = (F, O), there is at least one corresponding Pareto-optimal solution τ to I. The cost of262
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each such τ wrt each objective in O is the sum of the objective coefficients of the objective263

literals included in M . There can be multiple Pareto-optimal solutions that correspond to a264

Pareto-MCS which differ in how non-objective variables are assigned. Furthermore, for a265

single element (cost tuple) in the non-dominated set, there can be multiple corresponding266

Pareto-MCSes, since two different Pareto-MCSes can incur the same cost wrt each objective267

of I. Hence, preserving the Pareto-MCSes of an input MO-MaxSAT instance I is a sufficient268

but not necessary condition for preserving non-dominated(I). For computing the non-269

dominated set, it suffices that at least one corresponding Pareto-MCS for each element in270

the non-dominated set is preserved.271

We establish the fact that preservation of the set of Pareto-MCSes is a property of272

literal-reconstructible clauses, distinguishing this notion from the more general notion of273

reconstructible clauses which does not have this property. More precisely, the following274

summarizes the main theorem of this section: adding/removing literal-reconstructible clauses275

does not change the set of Pareto-MCSes.276

▶ Theorem 12. Assume that C is literal-reconstructible wrt an MO-MaxSAT instance277

I = (F, O). Then ParetoMCS(I) = ParetoMCS(I ∧ C).278

A proof of Theorem 12 relies on showing that, given any Pareto-optimal solution τ ⊃ ¬C of279

I that does not satisfy C, the weakly-dominating (Pareto-optimal) witness τl obtained by280

flipping the value of the literal l ∈ C \ B(I) that C is literal-reconstructible on corresponds281

to the exact same Pareto-MCS as τ . Toward formalizing this intuition, we show that if the282

negation of l is in any objective, then there is no Pareto-optimal solution that falsifies C.283

▶ Lemma 13. Let C be literal-reconstructible on l wrt I = (F, O) and ¬l an objective literal,284

i.e., ¬l ∈ B(I). Then there is no Pareto-optimal solution τ ⊃ ¬C to I that falsifies C.285

Proof of Lemma 13. As C is literal-reconstructible on l, τ ′ = (τ \ {¬l}) ∪ {l} is a solution286

to I. Because ¬l ∈ B(I) and therefore at least one of the objectives evaluates to less for τ ′
287

than for τ , τ ′ ≺ τ . Therefore, τ is not Pareto-optimal. ◀288

With the inverse of Lemma 13 covering the (special) case of some Pareto-optimal solutions289

falsifying C, we turn to the proof of Theorem 12.290

Proof of Theorem 12. If C is literal-reconstructible because every solution of I satisfies C,291

the solutions and therefore the set of Pareto-MCSes of I and I ∧ C are the same. Otherwise,292

let C be literal-reconstructible on l and consider the following.293

ParetoMCS(I) ⊂ ParetoMCS(I ∧ C): Let M ∈ ParetoMCS(I) and consider the Pareto-294

optimal solution τM ⊃ {¬b | b ∈ B(I) \ M} to I that sets τ(b) = 0 for every objective literal295

b not in M . Since C is literal-reconstructible on l, there is a solution δ to F ∧ C that weakly296

dominates τM . If τM satisfies C, then δ = τM . Otherwise, δ = (τM \ {¬l}) ∪ {l}, and since297

τM is Pareto-optimal and falsifies C, by Lemma 13 ¬l is not an objective literal. In both298

cases δ corresponds to the same MCS (M) as τM . Furthermore, M must be a Pareto-MCS299

of I ∧ C as any solution dominating δ would also be a solution to I and therefore M would300

not be a Pareto-MCS of I.301

ParetoMCS(I ∧ C) ⊂ ParetoMCS(I): Given M ∈ ParetoMCS(I ∧ C) and a Pareto-optimal302

τM ⊃ {¬b | b ∈ B(I)\M} to I∧C, τM is also Pareto-optimal for I as any dominating solution303

could be reconstructed (by flipping the value of l) into a solution to I ∧C dominating τM . ◀304

Contrasting Theorem 12, we show that a similar result cannot be obtained for recon-305

structible clauses.306
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▶ Proposition 14. There is an MO-MaxSAT instance I and a reconstructible clause C wrt307

I for which ParetoMCS(I ∧ C) ⊊ ParetoMCS(I).308

Proof. Consider the MO-MaxSAT instance I = (F, (O1, O2)) with F = (a1 ∨ b1 ∨ b2),309

O1 = a1, O2 = b1 + b2, and C = (¬b2). We have that ParetoMCS(I) = {{a1}, {b1}, {b2}}310

and ParetoMCS(I ∧ C) = {{a1}, {b1}}.311

Since the only clause in F and C are both satisfied by ω = {b1, ¬b2}, every superset of ω312

is a solution to F ∧ C. Furthermore, given a solution τ to F that falsifies C, the solution313

τω = (τ \ ¬ω) ∪ ω has O1(τω) = O1(τ) and O2(τω) ≤ O2(τ), hence τω ⪯ τ . It follows that C314

is reconstructible on ω wrt I. ◀315

This distinction between literal-reconstructible and reconstructible clauses in terms of316

the preservation of Pareto-MCSes provides two important insights.317

Firstly, the fact that adding/removing literal-reconstructible clauses does not change318

the set of Pareto-MCSes implies that (single-objective) MaxSAT preprocessing techniques319

that can be viewed as sequences of adding and removing literal-reconstructible clauses are320

techniques that are “directly applicable” to MO-MaxSAT. In particular, it has been shown321

that the non-dominated set of an MO-MaxSAT instance I = (F, O) can be computed by322

enumerating its Pareto-MCSes, which can in turn be achieved by enumerating the MCSes of323

the (single-objective) MaxSAT instance (F, Om) with the single objective Om =
∑

Oi∈O Oi324

that sums all objectives of I [41]. Thus, any preprocessing technique for single-objective325

MaxSAT that preserves MCSes is directly applicable to MO-MaxSAT by applying it to326

(F, (Om)) and using the preprocessed formula in the MO-MaxSAT instance. The correctness327

of such techniques—which we will overview shortly—can either be directly argued on the MO-328

MaxSAT level by viewing them as sequences of adding and removing literal-reconstructible329

clauses, or by using (MCS-preserving) redundancy notions such as cost literal propagation330

redundancy on the level of single-objective MaxSAT. On the other hand, preprocessing331

techniques captured by reconstructible clauses but which cannot be captured by literal-332

reconstructible clauses—as detailed later on—go beyond preserving Pareto-MCSes, having333

the ability to eliminate Pareto-MCSes that are redundant in terms of the non-dominating334

set. Hence, reconstructible clauses are key in capturing the correctness of such techniques in335

a uniform way.336

5 Preprocessing for MO-MaxSAT337

We proceed with overviewing a range of preprocessing techniques for MO-MaxSAT, lifting338

earlier-proposed techniques from single-objective MaxSAT (some of which originate from339

SAT) to the multi-objective setting. We detail in short which of the techniques are captured340

by the notions of reconstructible or literal-reconstructible clauses by simulating the techniques341

via sequences of additions and removals of redundant clauses of a specific type.342

5.1 Preprocessing Techniques Captured by Literal-Reconstructible343

Clauses344

First, we shortly recall well-known single-objective MaxSAT preprocessing techniques that are345

known to preserve MCSes [24]. We note again that the correctness of these techniques follows346

from the previously mentioned fact that each of them preserve MCSes in single-objective347

MaxSAT, which further follows naturally from earlier work on capturing these techniques348

in the setting of SAT solving via redundancy notions developed for SAT. Alternatively—as349

we will detail in the following—the correctness arguments can be directly made on the350
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MO-MaxSAT level by showing that each technique can be simulated via removing and adding351

literal-reconstructible clauses. For the following list of techniques, let I = (F, O) be an352

MO-MaxSAT instance with O = (O1, . . . , Op).353

Bounded Variable Elimination (BVE) [39, 12] as arguably the most important SAT354

preprocessing technique allows eliminating a non-objective variable x /∈ B(I) (and ¬x /∈ B(I))355

from I. A step of BVE on I and x results in the MO-MaxSAT instance bve(I, x) =356

(F ∪ Fres \ (Fx ∪ F¬x), O), where Fx = {C ∈ F | x ∈ C}, F¬x = {C ∈ F | ¬x ∈ C} are the357

sets of clauses containing x and ¬x, respectively, and Fres = {(A∨B) | (A∨x), (B ∨¬x) ∈ F}358

is the set of all non-tautological resolvents on x of the clauses in F , bounded in practice359

to eliminate variables when this decreases the number of clauses. Working directly on the360

MO-MaxSAT level, bve(I, x) can be obtained from I = (F, O) by a sequence of additions361

and removals of literal-reconstructible clauses as follows. First add Fres to F which does not362

change the non-dominated set because every clause in Fres is satisfied by any solution to F363

and therefore literal-reconstructible wrt I and any instance obtained by adding clauses from364

Fres to I. Note that for every (A ∨ B) ∈ Fres, by construction of Fres, (A ∨ x), (B ∨ ¬x) ∈ F .365

Second, remove the clauses Fx ∪ F¬x from the intermediate instance I ′ = (F ∪ Fres, O): every366

clause in Fx (resp. F¬x) is literal-reconstructible on x (resp. ¬x) wrt I ′ and any instance367

obtained by removing clauses in Fx ∪ F¬x from I ′.368

Blocked Clause Elimination (BCE) removes blocked clauses: a clause (C ∨ l) ∈ F is blocked369

on a literal l /∈ B(I) if for every clause (D ∨ ¬l) ∈ F containing ¬l, the resolvent (C ∨ D) is370

a tautology. Note that a clause blocked on l is literal-reconstructible on l.371

Subsumption Elimination (SE). A clause C ∈ F is subsumed by another clause D ∈372

F if D ⊂ C. One step of SE removes a subsumed clause C, resulting in the instance373

se(I, C) = (F \ {C}, O). Note that any solution to se(I, C) also satisfies C, and thus C is374

literal-reconstructible wrt se(I, C).375

Unit Propagation (UP). Given a non-objective literal l /∈ B(I) and a unit clause (l) ∈ F ,376

unit propagation removes each clause C ∈ F containing l (l ∈ C) and removes the negation377

¬l from the remaining clauses. Similarly as in SAT, UP can be viewed as an application of378

BVE on l (to remove negation ¬l from all clauses) followed by an application SE (to remove379

resolvents introduced by BVE).380

Self-Subsuming Resolution (SSR). Given two clauses (x ∨ A), (¬x ∨ B) ∈ F s.t. A ⊂ B,381

x /∈ B(I), and ¬x /∈ B(I), a step of SSR [36, 12] results in the formula ssr(I, (¬x ∨ B)) =382

((F ∪ {B}) \ {(¬x ∨ B)}, O). Note that B is literal-reconstructible wrt I and that (¬x ∨ B)383

is subsumed in F ∧ B.384

Failed Literal Elimination (FLE) and TrimMaxSAT. FLE [44, 18, 32] and TrimMaxSAT [37]385

allow for detecting unit clauses entailed by F , i.e., clauses satisfied by every solution to I.386

Such clauses are by definition literal-reconstructible.387

Equivalent Literal Substitution (ELS). [33, 9, 43] Two literals l1, l2 are equivalent if388

τ(l1) = τ(l2) for every solution τ . If neither literal nor their negation occur in objectives,389

equivalent literal substitution replaces every occurrence of l2 with l1 and ¬l2 with ¬l1.390

Viewed in terms of literal-reconstructible clauses, first add the clauses in which l2 (¬l2) has391
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been replaced and then remove clauses containing l2 (¬l2). Both of these sets of clauses392

are literal-reconstructible wrt the instance they are added to / removed from because393

τ(l1) = τ(l2).394

5.2 Preprocessing Techniques Captured by Reconstructible Clauses395

We now turn to techniques that do not preserve all Pareto-MCSes and therefore require a396

more general notion of redundancy. Specifically, we lift (group-)subsumed label elimination397

((G)SLE) [5, 30] from MaxSAT, extending subsumption to objective literals, to MO-MaxSAT398

and show that it is captured by adding reconstructible clauses.399

▶ Definition 15. An objective literal l ∈ B(I) of an MO-MaxSAT instance I = (F, (O1,400

. . . , Op)) is subsumed if there is a group of objective literals S ⊂ B(I) for which (i) ci(l) ≥401

ci(¬l) +
∑

s∈S ci(s) for all objectives (i = 1, . . . , p), (ii) every clause C ∈ F that contains l402

also contains some literal s ∈ S, and (iii) every clause C ∈ F that contains the negation of403

any s ∈ S also contains ¬l.404

Informally speaking, a step of GSLE on an MO-MaxSAT instance I wrt a subsumed literal l405

fixes l = 0. More formally, it results in the instance gsle(I, l) = I ∧ (¬l).406

In contrast to the preprocessing techniques discussed in the preceding subsection, GSLE407

cannot be lifted from single-objective MaxSAT to MO-MaxSAT by simply combining multiple408

objectives into a sum. To see this, consider the MO-MaxSAT instance from the proof409

of Proposition 14. When applying single-objective GSLE by summing the objectives as410

O1 + O2 = a1 + b1 + b2, a1 is subsumed by {b1}. However, adding the clause (¬a1) removes411

(1, 0) from the non-dominated set.412

The following example demonstrates that GSLE can remove Pareto-MCSes.413

▶ Example 16. Consider the MO-MaxSAT instance in the proof of Proposition 14. According414

to Definition 15 b2 is subsumed by {b1}, hence gsle(I, b2) = (F ∧ (¬b2), (O1, O2)), and thus415

ParetoMCS(gsle(I, b2)) ⊊ ParetoMCS(I)416

For an alternative proof of the fact that GSLE cannot be viewed as a sequence of adding/re-417

moving literal-reconstructible clauses, consider Example 10 where it was argued that the418

clause (¬a1) is reconstructible but not literal-reconstructible. Note that in the example a1 is419

subsumed by {a2}, and hence applying GSLE on the instance wrt a1 would result in adding420

exactly the clause (¬a1) into the instance.421

The correctness of GSLE for MO-MaxSAT follows by observing that it can be viewed as422

the addition of a reconstructible clause.423

▶ Proposition 17. If l is subsumed in an MO-MaxSAT instance I = (F, O), then the clause424

C = (¬l) is reconstructible wrt I.425

Proof. Let S ⊂ B(I) be the group of literals that subsumes l, and τ ⊃ ¬C with τ(F ) = 1 a426

solution that falsifies C. Consider the witness ω = S ∪{¬l} and the solution τω = (τ \¬ω)∪ω.427

Since all clauses that l appears in contain at least one literal s ∈ S (condition (ii) of428

Definition 15) and all clauses that a negated literal from S appears in also contain ¬l429

(condition (iii) of Definition 15), τω is a solution to F ∧ C. Because l (note that τ(l) = 1)430

increases every objective more than all of ω (condition (i) of Definition 15), τω weakly431

dominates τ . ◀432
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5.3 Preprocessing with Changes to Objectives433

All techniques we have so far considered solely change the formula of an instance and not434

the objectives. However, towards practical preprocessing for MO-MaxSAT, we note that435

MaxSAT preprocessing techniques that may change the single objective in MaxSAT can also436

be lifted to MO-MaxSAT. These include unit propagation and equivalent literal substitution437

on objective literals, intrinsic at-most-ones, and binary core removal (BCR). Alike their438

MaxSAT counterparts, these liftings cannot be expressed directly as a sequence of additions439

and removals of redundant clauses due to the very fact that redundant clauses by definition440

do not change costs of instances.441

Unit Propagation on an Objective Literal l ∈ B(I), in addition to removing all clauses442

containing l and removing ¬l from all clauses, replaces the terms ci(l) · l with the respective443

constant ci(l) in each objective Oi for i = 1, . . . , p. It is straightforward to see that by doing444

so costs of solutions are left unchanged.445

Equivalent Literal Substitution on Objective Literals replaces a literal l2 with another446

literal l1 if they are equivalent—regardless if the literals or their negations appear in an447

objective. Specifically, every occurrence of l2 (resp. ¬l2) is replaced by l1 (resp. ¬l1) and in448

every objective Oi (i = 1, . . . , p) l1 (resp. ¬l1) gets the coefficient ci(l1)+ci(l2) (resp. ci(¬l1)+449

ci(¬l2)). In this way, the costs of solutions to the preprocessed instance are left unchanged.450

Intrinsic At-Most-One Technique [23, 24] lifted to MO-MaxSAT works as follows. Given451

a set L of objective literals at most one of which are falsified in each solution to I (i.e., at452

least |L|−1 of the literals in L will incur cost in all solutions; such an L is sought heuristically453

using unit propagation), (i) a new literal lL is introduced, (ii) the clause (lL ∨
∨

l∈L ¬l) is454

added to F , and (iii) for every objective Oi (i = 1 . . . , p) the coefficients of all literals in L455

are reduced by the minimum of these coefficients cm
i = min{ci(l) | l ∈ L} and the terms456

cm
i · lL + (|L| − 1) · cm

i are added. For intuition, the preliminary condition implies that for457

any solution to I, at least |L| − 1 of the literals in L will incur cost at least cm
i wrt each of458

the objectives. The added clause (ii) enforces that lL must be true when all literals in L are459

true, incurring additional cost cm
i wrt each of the objectives.460

Binary Core Removal (BCE) [19, 30] can be phrased as first applying a restriction of461

the intrinsic at-most-one technique and then applying BVE. In detail, assume that a set462

L = {l1, l2} with ci(l1) = ci(l2) for all objectives satisfies the condition required for the463

intrinsic-at-most-ones and that ¬l1 and ¬l2 do not appear in F . Then BCR can be viewed464

as an application of intrinsic at-most-ones on L followed by applying BVE to eliminate l1465

and l2 (in practice when the size of the instance does not increase). Thus, its correctness for466

MO-MaxSAT follows directly from the correctness of intrinsic at-most-ones and BVE.467

6 Experiments468

Complementing our theoretical observations on redundancy notions for MO-MaxSAT, we469

detail results from an empirical evaluation of the combined effect of the various MO-MaxSAT470

preprocessing techniques overviewed in the preceding section in terms of their ability to471

reduce the size of real-world MO-MaxSAT instances and effect on runtime behaviour of472

recent MO-MaxSAT solvers. To the best of our understanding, this is the first evaluation473
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on the effect of preprocessing on MO-MaxSAT instances and the runtime performance of474

MO-MaxSAT solvers.475

We extended the MaxSAT preprocessor MaxPre 2 [30, 24] to MaxPre 2.1, covering MO-476

MaxSAT. The preprocessor implementation, empirical data, and benchmarks are available477

via https://bitbucket.org/coreo-group/mo-prepro. As the technique specification for478

MaxPre 2.1 in the experiments we used [[uvsrgc]VRTG], including unit propagation, BVE,479

SE, SSR, GSLE, BCR, TrimMaxSAT, FLE, ELS, and intrinsic at-most-ones.2480

We consider four MO-MaxSAT solvers: leximaxIST3 [10], BiOptSat4 [25], CLM5 [11],481

and Scuttle, our own implementation of a SAT-based approach based on enumerating so-482

called P -minimal models [38, 31]. BiOptSat, CLM, and Scuttle compute a Pareto-optimal483

solution for each element in the non-dominating set. BiOptSat is specific for MO-MaxSAT484

under two objectives (i.e., bi-objective MaxSAT), while Scuttle and CLM handle any number485

of objectives. leximaxIST restricts to the simpler task of computing a leximax-optimal486

solution, which corresponds to computing a specific element in the non-dominated set [16].487

As BiOptSat and leximaxIST offer different configurations, for BiOptSat we consider the488

three central variants of a linear SAT-UNSAT based algorithm (denoted LSU), a core-guided489

(MSU3) algorithm (denoted CG), and a hybrid between the two that was found to perform490

best in [25] (denoted Hybrid). For leximaxIST, we consider both a linear SAT-UNSAT and491

a core-guided version of the approach. For CLM we evaluate both the core-guided (denoted492

CG) and the implicit hitting set algorithm (denoted IHS). To achieve a tight integration, we493

included MaxPre 2.1 as a library into the source code of each solver. The modified source code494

of each solver is also available through https://bitbucket.org/coreo-group/mo-prepro.495

We used three real-world benchmarks from the literature: package upgradeability496

(PackUP) [26], learning interpretable decision rules (LIDR) [35], and development assurance497

level (DAL) [6]. For PackUP we used the set of 3692 instances from [10], obtained from498

Mancoosi International Solver Competition (https://www.mancoosi.org/misc-2011/) in-499

stances using all combinations of 2–5 of the 5 original objectives. The 366 LIDR benchmark500

instances with two objectives originate from [25], encoding the classification task for public501

benchmark datasets. The 96 DAL benchmark instances originate from the LION9 challenge502

(https://www.cristal.univ-lille.fr/LION9/challenge.html), each with 7 objectives.503

The pseudo-boolean constraints in the DAL instances were encoded with a (generalized)504

totalizer encoding [2, 29].505

All runtime experiments were executed on 2.60-GHz Intel Xeon E5-2670 machines with506

64-GB RAM in RHEL under a 1.5-hour per-instance time and 16-GB memory limit. Times507

reported include the runtimes of MaxPre 2.1 whenever preprocessing is used.508

6.1 Effect of Preprocessing on Instance Characteristics509

We first consider the effect of preprocessing on four central characteristics of MO-MaxSAT510

instances: the number of variables, the number of clauses, the sum of objective coefficients,511

and the number of Pareto-MCSes.512

Figure 1 shows the reduction of variables (top left), number of clauses (top right), the513

sum of objective coefficients (bottom left), and the number of Pareto-MCSes (bottom right)514

obtained with MaxPre 2.1 for each of the three benchmark domains. The number of variables515

2 We excluded BCE as using it in preliminary testing led to slightly worse runtimes overall.
3 leximaxIST obtained from https://github.com/miguelcabral/leximaxIST.
4 BiOptSat obtained from https://bitbucket.org/coreo-group/bioptsat
5 CLM obtained from https://gitlab.inesc-id.pt/u001810/moco

https://bitbucket.org/coreo-group/mo-prepro
https://bitbucket.org/coreo-group/mo-prepro
https://www.mancoosi.org/misc-2011/
https://www.cristal.univ-lille.fr/LION9/challenge.html
https://github.com/miguelcabral/leximaxIST
https://bitbucket.org/coreo-group/bioptsat
https://gitlab.inesc-id.pt/u001810/moco
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Figure 1 Per-instance instance size reductions achieved by preprocessing.

(Figure 1 top left) is reduced significantly on each benchmark domain. In terms of medians,516

after preprocessing 9.5% of the original variables remain for DAL, 32% for PackUP, and517

64% for LIDR instances. In terms of clauses (Figure 1 top right), the reductions are very518

significant for both DAL and PackUP, with 9.3% and 24% of the original number of clauses519

remaining after preprocessing in terms of the median, respectively. For LIDR the number of520

clauses is reduced less significantly, although a reduction can still be observed; 93% of the521

original number of clauses remain.522

Given an instance I = (F, (O1, . . . , Op)), we measure the sum of objective coefficients, i.e.,523 ∑p
i=1

∑
l∈Bi(I) ci(l). Note that preprocessing can change the sum of objective coefficients524

both by inferring that some objective literals can be set to 0—conceptually decreasing the525

trivial upper bound on the objective—and by inferring that some literal must be assigned to526

1—conceptually increasing the lower bound. Figure 1 (bottom left) shows the reduction in527

the sum of objective coefficients achieved by preprocessing on each benchmark instance. The528

magnitude of reductions achieved by preprocessing depend significantly on the benchmark529

domain. For LIDR, preprocessing only seldom reduces objective coefficients. For PackUP a530

significant reduction is observed; the median sum of objective coefficients after preprocessing531

is 57% of the original. Furthermore, on 297 of the PackUP instances preprocessing reduced532

at least one of the objectives to zero, removing it from the instance. For DAL, while for533

some instances the objective coefficients are reduced only slightly, on every single instance534

preprocessing reduced at least one of the objectives to zero. The median sum of objective535

coefficients after preprocessing is 54% of the original for DAL.536

For investigating how preprocessing affects the number of Pareto-MCSes, we used Scuttle537
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Table 1 Solved instances (#), uniquely solved instances (uniq.), and cumulative runtimes over
solved (

∑
t) in 103 seconds, with and without preprocessing (Prepro.).

PackUP LIDR DAL

Solver Prepro. # uniq.
∑

t # uniq.
∑

t # uniq.
∑

t

BiOptSat (LSU) no 1134 0 61.4 220 1 52.4 – – –
(bi opt.) yes 1161 27 47.7 223 4 34.1 – – –

BiOptSat (CG) no 1154 1 40.9 222 1 43.9 – – –
(bi opt.) yes 1159 6 34.5 222 1 38.4 – – –

BiOptSat (Hybrid) no 1154 1 46.6 222 0 40.4 – – –
(bi opt.) yes 1159 6 33.0 222 0 35.5 – – –

Scuttle no 1772 40 284.5 219 1 51.3 66 0 5.9
(multi opt.) yes 1778 46 244.1 218 0 44.1 67 1 5.3

CLM (CG) no 1593 88 301.3 206 2 48.0 60 7 8.1
(multi opt.) yes 1588 83 315.8 206 2 49.4 53 0 12.8

CLM (IHS) no 1301 91 258.5 134 19 26.8 48 7 0.3
(multi opt.) yes 1282 72 189.8 115 0 23.5 41 0 0.2

leximaxIST (LSU) no 2276 2 434.6 224 0 28.4 72 0 4.3
(leximax opt.) yes 2347 73 268.5 224 0 29.6 72 0 5.2

leximaxIST (CG) no 2450 13 140.7 220 2 43.7 72 1 12.9
(leximax opt.) yes 2453 16 140.0 218 0 38.0 73 2 9.7

to enumerate Pareto-MCSes of each benchmark instance under a 1.5-h per-instance time538

limit. On the LIDR instances, no reduction in the number of Pareto-MCSes was observed.539

For PackUP and DAL, respectively, preprocessing reduced the number of Pareto-MCSes540

significantly, by more than one third for 33% and 60% of the instances, respectively. Further-541

more, considering the per-instance reduction shown in Figure 1 (bottom right), we observed542

that for PackUP the number of Pareto-MCSes is often reduced significantly further.543

6.2 Effect of Preprocessing on Solver Runtimes544

We now turn to investigating the effect of preprocessing on the runtime performance of545

MO-MaxSAT solvers.546

Table 1 shows the number of solved instances, number of instances uniquely solved with547

or without preprocessing, and cumulative runtimes over solved instances (in 103 seconds) for548

each solver. We emphasize that here one should focus on comparing the effect of preprocessing549

on each individual solver and configuration. Most importantly, the numbers reported for550

the four different solvers—BiOptSat, Scuttle, CLM, and leximaxIST—are not directly551

comparable to each other as they solve different variants of MO-MaxSAT: leximaxIST552

computes a solution corresponding to a single element in the non-dominated set, while553

BiOptSat, Scuttle, and CLM enumerate the whole non-dominated set. Furthermore,554

since BiOptSat supports two objectives only, data for BiOptSat on PackUP is restricted to555

the 1420 instances with two objectives, and data on DAL is unavailable as the DAL instances556

involve more than two objectives.557

For PackUP, preprocessing has a clear positive impact on both the number of instances558

solved and the runtimes of all solvers except for CLM: the solvers use less cumulative559
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runtime after preprocessing for solving more instances than what can be solved without560

preprocessing. We observe that for each of the three variants of BiOptSat as well as the LSU561

variant of leximaxIST, preprocessing strictly increases the number of PackUP instances562

solved. There are close to no uniquely solved instances when preprocessing is not employed.563

Interestingly, the runtime improvement obtained using preprocessing for the LSU variants of564

BiOptSat, which without preprocessing is outperformed by the other BiOptSat variants, is565

so significant on PackUP instances that the LSU variant ends up even slightly outperforming566

the other variants. For Scuttle and the CG variant of leximaxIST the number of uniquely567

solved instances with preprocessing is also higher than without, although there is a more568

significant number of instances that are uniquely solved without preprocessing. For LIDR,569

preprocessing speeds up all three configurations of BiOptSat and also increases the number570

of instances solved for the LSU variant. However, preprocessing does not consistently improve571

the performance of Scuttle, CLM, and leximaxIST on LIDR and DAL.572

Overall, although somewhat modestly, preprocessing appears to have the most signific-573

ant positive impact on linear SAT-UNSAT type algorithms, namely, the LSU variants of574

BiOptSat and leximaxIST. This finding is in fact in-line with [24] where, in the con-575

text of MaxSAT, the strongest positive impact of preprocessing was observed for a linear576

SAT-UNSAT (solution-improving) MaxSAT solver.577

Finally, we investigate potential correlations between the impact of preprocessing on578

solver runtimes and the instance characteristics of number of clauses, number of variables,579

sum of objective coefficients, and number of Pareto-MCSes. As a metric for the impact580

of preprocessing on solver runtimes, we use relative solver performance, defined for a fixed581

instance and solver as (tno prepro −tprepro)/(tno prepro +tprepro), where t(no) prepro is the solving582

time with (without) preprocessing. This metric takes values from −1 to 1. A positive value583

implies that runtime with preprocessing was shorter than without preprocessing, and the value584

1 (value −1) means that the solver was able to solve the instance with (without) preprocessing,585

but timed out without (with) it; the closer to 1 (−1), the more significant a positive (negative)586

effect preprocessing has on overall runtime. As a metric for the impact of preprocessing587

on instance characteristics, we use fraction remaining. For a specific instance and instance588

characteristic, let f(no) prepro be the value of the feature with (without) preprocessing. The589

fraction remaining is then fprepro/fno prepro, taking values from 0 to 1. For some intuition, the590

closer to 0 the value is, the more significantly preprocessing affects the instance characteristic:591

e.g., the value 0 for the number of clauses means that preprocessing removes all clauses from592

an instance, and a value of 0.5 (1) means that the preprocessed instance contains half as593

many (exactly as many) clauses as the original instance.594

Figure 2 relates relative solver performance and the fractions remaining for the four595

instance characteristics for each solver using the configuration the runtimes of which were596

improved the most by preprocessing: BiOptSat (LSU), Scuttle, and leximaxIST (LSU),597

focusing on “non-trivial” instances with runtimes > 60 seconds either with or without598

preprocessing. We observe that a lower fraction of variables remaining (Figure 2 top left),599

clauses (top right), or objective coefficient sum (bottom left) by preprocessing often also600

somewhat tends to result in faster solver runtimes (i.e., a higher relative performance of the601

solver), especially for leximaxIST. Interestingly, the data for the LSU variant of BiOptSat602

as well as for Scuttle are quite scattered, with no clear correlations observed between603

relative solver performance and changes in instance characteristics. Finally, we note that the604

number of Pareto-MCSes appears to have little to no impact on the relative performance605

of these specific solvers. One possible explanation for this observation is that none of these606

specific solvers explicitly enumerate Pareto-MCSes in their search. On the other hand, based607
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Figure 2 Relating solver runtimes with instance characteristic.

on the data, reducing the sum of the objective coefficients by preprocessing may be beneficial608

for solver performance; also in light of this developing further techniques that are capable of609

reducing the objective ranges appears to be an interesting direction for further work.610

7 Conclusions611

Motivated by recent advances in (Max)SAT-based approaches to multi-objective optimization,612

we proposed redundancy notions and liftings of MaxSAT preprocessing techniques for613

the multi-objective setting. We showed that the redundancy notions capture different614

preprocessing techniques, with the (in)ability to remove Pareto-MCSes as the underlying615

differentiating property. We provided a stand-alone preprocessor implementation of the616

preprocessing techniques, and empirically evaluated the impact of preprocessing in multi-617

objective MaxSAT. The preprocessor can significantly reduce the size of real-world multi-618

objective MaxSAT instances and also has in cases a positive effect on runtimes of current619

state-of-the-art multi-objective MaxSAT solvers. Interesting directions for future work include620

developing redundancy notions that can capture changes to objectives; more fine-grained621

analysis of preprocessing for the restricted case of leximax optimization; and empirical622

evaluation of preprocessing on further problem settings with varying instance properties such623

as different distributions of objective coefficients.624
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