
Core Boosting in SAT-Based Multi-Objective
Optimization

Christoph Jabs , Jeremias Berg , and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland
christoph.jabs@helsinki.fi

Abstract. Maximum satisfiability (MaxSAT) constitutes today a suc-
cessful approach to solving various real-world optimization problems
through propositional encodings. Building on this success, approaches
have recently been proposed for finding Pareto-optimal solutions to multi-
objective MaxSAT (MO-MaxSAT) instances, i.e., propositional encod-
ings under multiple objective functions. In this work, we propose core
boosting as a reformulation/preprocessing technique for improving the
runtime performance of MO-MaxSAT solvers. Core boosting in the multi-
objective setting allows for shrinking the ranges of the multiple objectives
at hand, which can be particularly beneficial for MO-MaxSAT relying
on search that requires enforcing increasingly tighter objective bounds
through propositional encodings. We show that core boosting is effec-
tive in improving the runtime performance of SAT-based MO-MaxSAT
solvers typically with little overhead.

Keywords: Multi-objective optimization · maximum satisfiability · core
boosting · preprocessing.

1 Introduction

Maximum satisfiability (MaxSAT) [5], the optimization extension of Boolean
satisfiability (SAT) [11], has developed from a theoretical tool into a compet-
itive practical constraint optimization paradigm. This is in particular due to
noticeable algorithmic advances in practical MaxSAT algorithms developed in
recent years based on the iterative use of SAT solvers. Today, MaxSAT solvers
are successfully employed to efficiently solve large instances of various types of
real-world NP-hard combinatorial optimization problems via propositional en-
codings under a single objective function.

Building on advances in (single-objective) MaxSAT solving, algorithmic ad-
vances have been recently made towards developing increasingly effective solvers
for the more general and challenging realm of MaxSAT under multiple ob-
jectives, i.e., multi-objective MaxSAT (MO-MaxSAT) [45,46,27,13,22,14]. Mo-
tivated through practical applications that give rise in a natural way to proposi-
tional encodings of optimization problems under multiple objectives, the goal in
MO-MaxSAT solving is to efficiently enumerate all Pareto-optimal—as a stan-
dard notion of optimality in the multi-objective setting—solutions (or, more

http://orcid.org/0000-0003-3532-696X
http://orcid.org/0000-0001-7660-8061
http://orcid.org/0000-0003-2572-063X

2 C. Jabs et al.

precisely, a representative Pareto-optimal solution for each point in the so-called
non-dominated set within the search space of all solutions). Pareto-optimal so-
lutions are solution with respect to which no objective can be improved without
making the solution worse in terms of another objective, hence intuitively con-
stituting the best possible solutions in general terms under multiple objectives.

A complementary approach to improving constraint solvers by developing
more effective algorithms is that of developing preprocessing (or reformulation)
techniques to be applied before calling a solver. The aim of (effective) prepro-
cessing is to improve solver runtimes to the extent that the additional time
spent in preprocessing is worthwhile in terms of the combined overall time spent
in preprocessing and solving, compared to the time required to directly solve
the original problem instance. Preprocessing has been highly influential in SAT
solving [12], and motivated by this, extensions of SAT preprocessing have been
proposed for MaxSAT [7,10,24,42] and most recently for MO-MaxSAT [26]. How-
ever, so-far liftings of (Max)SAT preprocessing techniques to the realm of MO-
MaxSAT have turned out to provide relatively small runtime improvements for
current state-of-the-art MO-MaxSAT solvers. This suggests that more research
is called for towards harnessing the full potential of preprocessing for speeding
up MO-MaxSAT solving.

In this work, we propose core boosting as an approach to automatically
reformulating MO-MaxSAT instances. Core boosting was earlier proposed in
the context of single-objective MaxSAT solving [8] with later applications in
single-objective core-guided constraint programming [21] and pseudo-Boolean
optimization [15]. In the previous works, core boosting was proposed as an any-
time algorithm that combines so-called core-guided and upper-bounding search
for finding good solutions to single-objective constraint optimization instances
within a stringent runtime limit. In contrast, we develop core boosting for the
multi-objective setting as a pre-solving phase technique that allows for refor-
mulating an MO-MaxSAT instance by tightening its search space, in particular
via detecting inconsistent parts of the search space which can be subsequently
ignored by MO-MaxSAT solvers. This is achieved—in short, as we will later on
explain in more detail—by increasing objective offsets in a given MO-MaxSAT
instance to match the so-called ideal point of the multi-objective search space
without removing any Pareto-optimal solutions. As such core boosting can be
viewed as a preprocessing technique which significantly differs from more typi-
cal (Max)SAT-based preprocessing techniques so-far studied for MO-MaxSAT.
Core boosting intuitively leads to enabling more optimized propositional encod-
ings of pseudo-Boolean constraints used within state-of-the-art MO-MaxSAT
solvers. We explain in detail how core boosting can be tightly integrated into
MO-MaxSAT solvers, and provide an open-source implementation in conjunc-
tion with three recently-proposed algorithms for MO-MaxSAT. Empirically, it
turns out that core boosting can be highly effective in speeding up overall run-
times of MO-MaxSAT algorithms, having a noticeably greater positive impact
on runtime performance than presently available MaxSAT-based preprocessing
techniques for MO-MaxSAT.

Core Boosting in SAT-Based Multi-Objective Optimization 3

2 Multi-Objective MaxSAT

For Boolean variable x, there are two literals: the positive x and the negative
¬x. A clause is a disjunction of literals, and a (CNF) formula a conjunction of
clauses. When convenient, we view a clause as the set of literals in the clause, and
a formula as the set of its clauses. An assignment τ maps variables to {0, 1}, i.e.,
τ(x) = 1 (true) or τ(x) = 0 (false). Assignments extend to literals, clauses, and
formulas by τ(¬x) = 1− τ(x) for negative literal ¬x, τ(C) = max{τ(l) | l ∈ C}
for clause C, and τ(F) = min{τ(l) | C ∈ F} for formula F . An assignment for
which τ(F) = 1 is a solution to F . If a formula has a solution, the formula is
satisfiable, otherwise the formula is unsatisfiable.

A pseudo-Boolean (PB) expression O = (
∑

i ci · li) + o is a sum of terms—
each consisting of a literal li and a positive integer constant ci—and a non-
negative integer constant o referred to as offset of O. We denote the set of
literals appearing in O by lits(O). The value under O of an assignment τ over
lits(O) is O(τ) = (

∑
i ciτ(li))+o. For an integer B, a pseudo-Boolean constraint

O ≤ B is satisfied by an assignment τ if O(τ) ≤ B. Our work makes extensive
use of CNF encodings that encode values of PB constraints into literals [6,17,29].
More precisely, Cnf(O ≤ B) is a CNF formula that defines a literal ⟨O ≤ B⟩
such that any solution τ of Cnf(O ≤ B) sets τ(⟨O ≤ B⟩) = 1 if and only if τ
satisfies O ≤ B1. When clear from context, ⟨O ≤ B⟩ should be understood as
Cnf(O ≤ B) ∧ ⟨O ≤ B⟩. For example, the formula F ∧ ⟨O ≤ B⟩ stands for the
formula F ∧ Cnf(O ≤ B) ∧ ⟨O ≤ B⟩, the solutions of which are the solutions τ
of F that satisfy O ≤ B. We also use ⟨O < B⟩ as a shorthand for ⟨O ≤ B − 1⟩,
and ⟨O ≥ B⟩ as a shorthand for ¬⟨O < B − 1⟩.

We focus on the following natural extension of maximum satisfiability to the
multi-objective setting. An instance I = (F,O) of multi-objective maximum
satisfiability (MO-MaxSAT) consists of a formula F and p linear objective func-
tions O = (O1, . . . , Op) represented as pseudo-Boolean expressions. Note that
this definition covers single-objective MaxSAT with p = 1. Any solution τ to F
is a solution to I. A solution τ has cost O(τ) = (O1(τ), . . . , Op(τ)) with respect
to I, and cost Oi(τ) with respect to objective Oi. The ideal point [18] (γ1, . . . , γp)
of I consists of the smallest value for each objective over the solutions to I, i.e.,
γi = min{Oi(τ) | τ(F) = 1}. We focus on the task of computing Pareto-optimal
solutions to MO-MaxSAT instances. A solution τ dominates another solution τ ′

if Oi(τ) ≤ Oi(τ
′) for all i = 1, . . . , p and Oi(τ) < Oi(τ

′) for some i. A solution
τ is Pareto-optimal if it is not dominated by any solution to I. The costs of
Pareto-optimal solutions form the non-dominated set of I.

Example 1. Consider the bi-objective instance on the left in Fig. 1. The infeasible
region with respect to the objectives, i.e., the objective values for which no
solutions to F exist, is illustrated on the right. The non-dominated set of the
instance is {(4, 8), (5, 7), (6, 3)} and its ideal point (4, 3). □

1 In practice, the algorithms considered in this work often employ an implication
relationship—τ(⟨O ≤ B⟩) = 1 if τ satisfies O ≤ B—rather than the mentioned
equivalence. We assume equivalences for simplicity without loss of generality.

4 C. Jabs et al.

F ={(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x4),

(x2 ∨ x3 ∨ x5), (x3 ∨ x4 ∨ x5)}
O1 =3x2 + 4x3 + 2x4 + 5x5

O2 =7x1 + 4x2 + 1x3 + 2x4 0 3 6 9 12
0

3

6

9

12

O1

O
2

Infeasible region
Ideal point γ

Pareto-opt. solutions

Fig. 1. A bi-objective MaxSAT instance and its infeasible region with respect to the
objectives.

While we will present core boosting in the context of computing a single
representative solution to each element in the non-dominated set, we note that
the technique is also applicable when computing every Pareto-optimal solution.
In particular, unlike other specific preprocessing techniques [26] core boosting
maintains all solutions for each element in the non-dominated set.

2.1 SAT-based MO-MaxSAT Algorithms

Similarly as single-objective MaxSAT algorithms, multi-objective MaxSAT algo-
rithms [45,46,27,13,22,14] make extensive use of SAT solvers [36], i.e., decision
procedures that either compute a solution of a CNF formula, or determine that
the formula is unsatisfiable, i.e., that no such solutions exist. For computing
Pareto-optimal solutions, SAT solvers are used to iteratively compute solutions
of the instance. When a new solution is found new constraints that rule out dom-
inated solutions from consideration are added until no more solutions remain,
at which point the entire non-dominated set has been discovered.

A close analogy in the single-objective case is the Sat-Unsat (LSU) [5] algo-
rithm for minimizing a single objective O subject to a CNF formula F . This algo-
rithm is implemented by various single-objective MaxSAT solvers [17,32,31,43].
Starting from some upper bound ub, LSU minimizes O by incrementally in-
voking a SAT solver on the formula F ∧ ⟨O < ub⟩. If the SAT solver finds a
new solution τ , we have O(τ) < ub and hence the upper bound is improved.
If the solver reports unsatisfiability, the latest solution found is optimal and
the algorithm terminates. With this intuition, we next detail three state-of-the-
art algorithms for computing Pareto-optimal solutions: P -Minimal, BiOptSat,
and LowerBound.

P -Minimal [45,30] can be seen as multi-objective LSU. When solving an in-
stance of MO-MaxSAT (F, (O1, . . . , Op)), P -Minimal iteratively invokes a SAT
solver on a working formula consisting of F and additional constraints added
in previous iterations. When the SAT solver returns a solution τ , P -Minimal
(i) blocks all solutions of worse quality, i.e., the ones dominated by τ , and (ii) re-
stricts search in subsequent iterations to solutions dominating τ . Part (i) is
achieved by adding the constraints

∨p
i=1⟨Oi < Oi(τ)⟩ that enforce subsequent

Core Boosting in SAT-Based Multi-Objective Optimization 5

0 2 4 6 8
0

2

4

6

8

O1

O
2

P -Minimal

0 2 4 6 8
0

2

4

6

8

O1

O
2

BiOptSat

0 2 4 6 8
0

2

4

6

8

O1

O
2

LowerBound

Fig. 2. Search trajectories of P -Minimal (left), BiOptSat (middle), and Lower-
Bound (right) in terms of objective values.

solutions to improve in at least one objective. Part (ii) is achieved by adding the
constraints

∧p
i=1⟨Oi ≤ Oi(τ)⟩ that enforce subsequent solutions to not worsen

in any objective. When the SAT solver reports unsatisfiability, all constraints
of type (ii) are removed and search continues. When no more solutions can be
found without any constraints of type (ii), all Pareto-optimal solutions have been
found. Fig. 2 (left) illustrates one possible search trajectory of P -Minimal (with
respect to objective values) on a bi-objective instance. Assume search starts at
a solution with objective values (7, 8). By iteratively steering search to regions
that dominate the current solution, P -Minimal moves through intermediate
solutions (marked in blue) until it discovers the (red) non-dominated point at
(3, 3), after which the SAT solver reports unsatisfiability. Then, all constraints of
type (ii) are removed and P -Minimal starts the minimization procedure again
(illustrated by the dashed line) while retaining the blocking constraints (i). Af-
ter three minimization procedures, the entire non-dominated set in Fig. 2 is
discovered and the algorithm terminates since all solutions are blocked.

BiOptSat in its Sat-Unsat variant [27] computes the non-dominated set of
a bi-objective MaxSAT instance (F, (O1, O2)) via the so-called lexicographic
method [34]. Assuming the same initial solution with objective values (7, 8),
BiOptSat starts by employing single-objective LSU to find a solution τ mini-
mizing O1, as illustrated in Fig. 2 (middle) by arrows going leftward until the blue
solution on the infeasibility boundary is reached. Next, O2 is minimized while
restricting O1 to at most O1(τ), i.e., subject to F ∧ ⟨O1 ≤ O1(τ)⟩, using LSU,
illustrated in the figure by the downward arrows, until the red Pareto-optimal
solution τp is found. To find the next Pareto-optimal solution, BiOptSat adds
⟨O2 < O2(τ

p)⟩ to F and reiterates. This is illustrated by the dashed arrows in
Fig. 2. The algorithm terminates when no solutions remain, indicated by the
SAT solver reporting unsatisfiability after removing the constraints on O1.

LowerBound [14], in contrast to P -Minimal and BiOptSat, mainly performs
lower-bounding search to compute the non-dominated set. It maintains a fence,
i.e., a tuple (λ0, . . . , λp) of values, initialized to (0, . . . , 0), that represents the
greatest objective values currently considered. During search LowerBound al-

6 C. Jabs et al.

ternates between iteratively loosening the fence until the region bounded by
the constraints

∧p
i=1⟨Oi ≤ λi⟩ contains feasible solutions, and then employing

P -Minimal to find all elements of the non-dominated set “inside” the current
fence. The search of P -Minimal inside a fence is illustrated in Fig. 2 (right) for
the fence shown in green. After P -Minimal finds all Pareto-optimal solutions
within the fence, the fence is loosened further. The algorithm terminates once
all solutions have been blocked by P -Minimal.

3 Core Boosting for MO-MaxSAT

We now detail core boosting for MO-MaxSAT as our main contribution.

3.1 Effects of Core Boosting

Before describing how core boosting is realized, we explain how core boosting
allows for reducing the search space of MO-MaxSAT instances and detail how
core boosting reformulates MO-MaxSAT instances.

Core boosting is a technique that through reformulating an MO-MaxSAT
instance increases the offsets of the objectives of the instance to match the
ideal point without removing any Pareto-optimal solutions. As such core boost-
ing can be viewed as a preprocessing technique which significantly differs from
more typical (Max)SAT-based preprocessing techniques recently proposed for
MO-MaxSAT [26]. The intuition for the potential usefulness of the core boost-
ing reformulation stems from the fact that MO-MaxSAT algorithms such as
P -Minimal, BiOptSat, and LowerBound search only over the non-constant
parts of the objectives in the instance: the range of possible solution costs that
the algorithms consider during search is bounded “from below” by the point con-
sisting of the offsets of each objective, and “from above” by the point consisting
of the maximum value of each objective. As such, increasing the offsets of the
objectives conceptually leads to a smaller search space.

Example 2. Recall the bi-objective MaxSAT instance from Example 1 and Fig. 1.
For this instance, the range of solution costs that P -Minimal, BiOptSat, and
LowerBound consider during search is 0 to 12 for both O1 and O2, as illus-
trated on the left in Fig. 3. Applying core boosting on this instance results in a
reformulation with the same Pareto-optimal solutions and objectives Ocb

1 , Ocb
2

with offsets ocb
1 = 4 and ocb

2 = 3, respectively. When solving the reformulated
instance, MO-MaxSAT algorithms are effectively searching over the costs in the
range 4 . . . 12 for O1 and 3 . . . 12 for O2. This search space (depicted on the right
in Fig. 3) is smaller than the one that would be considered without core boost-
ing. In particular, after core boosting, the cross-hatched area shown in Fig. 3
does not need to be considered during search. □

Formally, core boosting transforms an instance I = (F,O) with an ideal point
(γ1, . . . , γp) into a reformulated (“core-boosted”) instance Icb = (F cb,Ocb) for
which the following hold.

Core Boosting in SAT-Based Multi-Objective Optimization 7

0 3 6 9 12
0

3

6

9

12

O1

O
2

0 3 6 9

0

3

6

9

Ocb
1 − ocb

1

O
cb 2

−
oc

b
2

Infeasible region Discounted region Search region
Ideal point γ Pareto-opt. solutions

⇒
Core Boosting

Fig. 3. Illustration on how core boosting shifts the point where search is anchored to
the ideal point and reduces the search space.

(i) All solutions of F cb are solutions to F , and any solution to F can be uniquely
extended into a solution to F cb.

(ii) O(τ) = Ocb(τ) for all solutions τ to F cb.
(iii) The offset of objective Ocb

i is γi.

In other words, core boosting reformulates a given MO-MaxSAT instance in
a way that all solutions and their costs are preserved, and the offset of each
objective Oi is increased to γi, the ith coordinate of its ideal point.

When viewed as a lower-bounding method, the offsets that core boosting
derives for each objective are as high as possible while guaranteeing that all
Pareto-optimal solutions and the non-dominated set are preserved. More pre-
cisely, consider an MO-MaxSAT instance I = (F, (O1, . . . , Op)), its ideal point
(γ1, . . . , γp) and fix an index i. By definition, there is a Pareto-optimal solution τ
for which Oi(τ) = γi. Since the coefficients of objectives are positive, any refor-
mulation Iref = (F ref, (Oref

1 , . . . Oref
p)) of I in which the offset of Oref

i is strictly
greater than γi will have a different non-dominated set, and specifically the cost
of τ will be different. In the context of algorithms computing the entire non-
dominated set, core boosting therefore derives the tightest lower bound given by
a single point.2

3.2 Core Boosting via Single-Objective Core-Guided Search

We now detail how the reformulation performed by core boosting can be re-
alized in practice via single-objective lower-bounding search based on so-called
unsatisfiable cores, i.e., using core-guided MaxSAT search [37,2,1,40,41]. We de-
tail core boosting in pseudocode as Algorithm 1. Invoked on an MO-MaxSAT
instance (F,O), core boosting iteratively invokes single-objective core-guided
lower-bounding search (represented in pseudocode by the CoreGuided sub-
procedure) on single-objective MaxSAT instances. In the ith iteration, Core
2 Exploring similar ideas from the perspective of so-called lower bound sets [19] con-

stitutes interesting future work beyond the scope of this paper.

8 C. Jabs et al.

Algorithm 1 Core boosting for MO-MaxSAT
Input: An MO-MaxSAT instance I = (F, (O1, . . . , Op))
Output: A reformulated MO-MaxSAT instance Icb

1: F cb ← F
2: for i← 1 to p do
3: (F cb, Ocb

i)← CoreGuided(F cb, Oi)
4: return (F cb, (Ocb

1 , . . . , Ocb
p))

Algorithm 2 CoreGuided
Input: A single-objective MaxSAT instance I = (F, (O))
Output: An optimal solution τ to I and a reformulated instance I′

1: F ref ← F, Oref ← O
2: while true do
3: (res, κ, τ)← ExtractCore(F ref, Oref)
4: if res = “unsatisfiable” then
5: (F ref, Oref)← Reformulate(F ref, Oref, κ)
6: else
7: return τ, (F ref, (Oref))

Guided is invoked on F cb and Oi (line 3), adding new clauses to F cb and re-
formulating Oi to Ocb

i . The formula F cb consists of the clauses of the original
instance F and all additional constraints added by CoreGuided in previous
iterations.

Algorithm 2 details a generic abstraction of core-guided search under a single
objective. The algorithm works by iteratively extracting so-called (unsatisfiable)
cores based on which the instance is reformulated. A core κ of a single-objective
MaxSAT instance I = (F, (O)) is a subset of objective literals κ ⊂ lits(O) out
of which at least one literal has to incur cost, i.e., has to be assigned to 1. Such
a core can be obtained with a modern off-the-shelf SAT solver by employing its
assumption interface [16,36]. This core extraction is done in the ExtractCore
subroutine which takes a formula F and an objective O as input and returns a
triple (res, κ, τ) where res indicates whether F ′ = F ∧

∧
l∈lits(O) ¬l is satisfiable.

If res = “unsatisfiable”, κ contains a core of (F, (O)), otherwise τ contains a
solution to F ′.

When a new core is extracted, the instance is reformulated by the Refor-
mulate subroutine. Existing core-guided algorithms differ mainly in the details
of how Reformulate is instantiated. Core boosting makes very lightweight
assumptions on the underlying core-guided algorithm. It can be realized with
any core-guided algorithm whose instantiation of Reformulate increases the
offset of the objective, decreases the sum of coefficients in the objective of the
literals in the core, and adds additional clauses and variables to preserve the
solutions and their costs in the instance. More specifically, the properties of Re-
formulate required for core boosting can be summarized as follows. Assume
that Reformulate is invoked with formula F , objective O, and core κ, and

Core Boosting in SAT-Based Multi-Objective Optimization 9

that it returns a new formula F ref and objective Oref. Then the following must
hold for core-boosting to be applicable: (i) Every solution of F ref is a solution of
F ; (ii) O(τ) = Oref(τ) holds for all solutions of F ref; (iii) the sum of coefficients
in Oref is smaller than in O; and (iv) the offset of Oref is greater than the offset
of O. It should be noted that these properties are met by practically all modern
core-guided algorithms [20,37,2,1,40,41,24,44,25].

As a side-remark, each reformulation performed by all core-guided algorithms
we are aware of increases the offset of the objective, and decreases the sum of
coefficients, exactly by the minimum coefficient of the literals in the core. This
is because at least one literal in the core has to incur cost. Thus, the smallest
possible cost incurred due to a core matches the smallest coefficient among the
literals in the core.

Example 3. Invoke CoreGuided on the constraints and objective O1 of the
MO-MaxSAT instance from Fig. 1. Let the cores extracted in the first two
iterations of executing CoreGuided on (F, (O1)) be κ1 = {x2, x3, x5} and
κ2 = {x3, x4, x5}. After reformulating these two cores, the reformulated instance
is satisfiable at line 4. The smallest coefficients in the cores are cκ1 = 3 and
cκ2 = 1, respectively. The final reformulated objective has a constant offset of
ocb
1 = cκ1 + cκ2 = 4 with its coefficient sum reduced by the offset. □

Note that core boosting for MO-MaxSAT, as proposed here, differs from
core boosting for (single-objective) MaxSAT [8]. For MaxSAT, CoreGuided is
executed under a heuristically determined time limit since core-guided search is
complete for MaxSAT. In contrast, in the multi-objective setting running Core
Guided without resource limits will not fully solve the instance (assuming that
the objectives conflict with each other in that their minimum values correspond
to different solutions). Instead, the search space is reduced with respect to the
individual objectives.

3.3 Realizing Core Boosting

A variety of core-guided single-objective MaxSAT algorithms from the litera-
ture [37,2,1,40,41] could be employed for practical implementations of core boost-
ing. We detail here our implementation of core boosting based on the effective
core-guided algorithm OLL [40,1].

Informally speaking, OLL instantiates Reformulate by introducing PB
constraints over the literals in the extracted cores in a way that systematically
allows additional literals to be assigned to 1 in subsequent iterations. More pre-
cisely, after obtaining a core κ, OLL (i) decreases the coefficient of each l ∈ κ
by cκ, the smallest coefficient among the literals in κ, removing l from the ob-
jective if the new coefficient is 0 (this process is called clause cloning in some
references [9]); and (ii) adds new variables ⟨

∑
l∈κ l ≥ k⟩ to the reformulated ob-

jective with the coefficient cκ and constraints Cnf(
∑

l∈κ l ≤ k) to the formula
for k = 2, . . . , |κ|. Conceptually, step (i) relaxes the current objective by remov-
ing at least one literal from the objective and allowing at least one literal in κ

10 C. Jabs et al.

to be assigned to 1 in subsequent iterations. Step (ii) adds constraints to ensure
that at most one literal can be set to 1 without new cores being discovered, thus
ensuring the preservation of optimal solutions.

An important intuition for understanding the effects of core boosting is that
the changes in the number of literals in the objective depend on the coefficients
in the extracted cores. If the coefficients in the variables of a core κ are not
equal, not all literals will be removed from the objective in step (i). Since OLL
introduces |κ| − 1 new variables, in those cases the number of literals in the
reformulated objective can increase. In contrast, if the coefficients of the variables
are all equal, the number of variables in the objective will decrease by one after
reformulation as then all variables in the core are removed and |κ| − 1 variables
are introduced.

Example 4. Recall Example 3 where O1 (see Fig. 1) was reformulated based
on the cores κ1 and κ2. The detailed objective reformulated by OLL is Ocb

1 =
x4 + 4x5 + 3⟨κ1 ≥ 2⟩ + 3⟨κ1 ≥ 3⟩ + ⟨κ2 ≥ 2⟩ + ⟨κ2 ≥ 3⟩ and the clauses
Cnf(κ1 ≤ k) ∧ Cnf(κ2 ≤ k) are added to the formula. □

Core boosting can be tightly integrated with SAT-based MO-MaxSAT algo-
rithms in a way that allows for reusing the structure introduced by the core-
guided algorithm employed for core boosting in the subsequent MO-MaxSAT
search. More specifically, both the implementation of OLL and our implementa-
tions of P -Minimal, BiOptSat, and LowerBound realize their PB constraints
using (generalized) totalizers [6,39,29]. For a PB expression O, a totalizer realizes
Cnf(O ≤ B) by first partitioning O into subsets of size 1 and then iteratively
merging partitions by adding extra clauses and variables that count the sum of
coefficients of the terms in the partitions to be merged. The merging stops when
there is a single partition left, at which point the new variables obtained in the
last step correspond to ⟨O ≤ k⟩ for all k = 1, . . . , B. For an alternative view, the
structure of Cnf(O ≤ B) created with a totalizer encoding can be visualized as
a binary tree. The leaves of the tree correspond to the terms in O. Each internal
node corresponds to new variables that count the sum of weights of the terms in
the leaves of the subtree rooted at that node set to 1 by satisfying assignments.

When building a totalizer over the reformulated objective Oref obtained after
core boosting, our implementation makes use of the fact that some variables
already correspond to the roots of other totalizers introduced by OLL. Instead
of treating those as leaves in the new totalizer, we instead treat them as internal
nodes, thus avoiding redundancy in the encoding which would be incurred by
“recounting” the counting variables introduced by OLL in the pseudo-Boolean
constraint over Oref used by P -Minimal, BiOptSat, or LowerBound.

3.4 Core Boosting and MO-MaxSAT Solver Interactions

Finally, in addition to decreasing the range of objectives that algorithms need
to search over, we identify two further interactions between core boosting and
MO-MaxSAT algorithms.

Core Boosting in SAT-Based Multi-Objective Optimization 11

The first relates to the number of clauses in a PB constraint Cnf(O ≤ B)
built over an objective O =

∑
i(ci · li) + o by MO-MaxSAT algorithms such

as P -Minimal, BiOptSat, and LowerBound. For CNF encodings used in
practice—including the totalizer we use—the number of clauses in Cnf(O ≤ B)
depends on B and either on the sum of coefficients or the number of unique sums
that can be obtained from the coefficients [29,17]. The effect of core boosting
on these properties will depend on the specific instance being solved. Due to
the properties of typical instantiations of Reformulate (recall Section 3.2),
core boosting is guaranteed to decrease the sum of coefficients of each objective.
In contrast (recall Section 3.3), the effect of core boosting on the number of
variables in the objectives and the subset sums that can be obtained from them
will depend on the coefficients of the variables in the extracted cores. Finally,
another important contrast between single and multi-objective core boosting
is that the intermediate solutions obtained during invocations of core-guided
search on the separate objectives can not be used as global upper bound for the
objectives by the MO-MaxSAT algorithm. Thus, we expect the effect of core
boosting on the number of clauses introduced by the subsequent MO-MaxSAT
algorithms to be more limited than in the single-objective case.

As a second interaction, core boosting can alter the structure of the PB con-
straints built over the reformulated objective by the MO-MaxSAT algorithms.
In the case of totalizers this structure is defined by the ordering of the leaves
in the totalizer tree and the structure of the tree itself. It is well-known that
the structure of PB encodings employed can have a significant impact on the
performance of constraint optimization algorithms [3,4]. While fundamental un-
derstanding on exactly how the structure of a totalizer affects the performance
of constraint optimization algorithms is lacking, conventional wisdom based on
empirical evaluation suggests that it is beneficial to place interrelated variables
“close” in the tree. Core boosting achieves an approximation of this in the core-
guided phase where totalizer tree substructures are built that have variables
appearing together in cores as leaves.

4 Empirical Evaluation

We empirically evaluate the impact of core boosting. We integrated core boosting
into three recent MO-MaxSAT algorithms, P -Minimal [45,30], BiOptSat [27],
and LowerBound [14] using their implementations in the MO-MaxSAT solver
Scuttle [26]. The implementation and benchmarks used in our evaluation, as
well as full empirical data, are available in open source (https://bitbucket.org/
coreo-group/scuttle). All experiments reported on were run on 2.40-GHz Intel
Xeon Gold 6148 CPUs with 381-GB RAM in RHEL under a 1.5-hour per-
instance time and 32-GB memory limit. Whenever core boosting was applied,
the reported runtimes include the time spent in both core boosting and the
MO-MaxSAT solver.

We use benchmark instances from seven domains from earlier evaluations
of MO-MaxSAT solvers: multi-objective set covering with fixed set cardinality

https://bitbucket.org/coreo-group/scuttle
https://bitbucket.org/coreo-group/scuttle

12 C. Jabs et al.

(set-cover-sc) and fixed element probability (set-cover-ep) [27], learning inter-
pretable decision rules (lidr) [33], the flying tourist problem (ftp) [35], package
upgradeability (packup) [28], staff shift scheduling (shiftdesign) [38], and satellite
photograph scheduling (spot5) [23]. Set-cover-sc and set-cover-ep, instances with
two objectives were obtained from [27] and instances with 3–5 objectives were
generated similarly following [27]. The lidr instances contain 2 objectives and
were also obtained from [27]. The ftp instances containing 2 objectives were ob-
tained from [14] as instances with pseudo-Boolean constraints and encoded with
the (generalized) totalizer encoding [6,29]. Package upgradeability instances were
obtained from Mancoosi International Solver Competition of years 2011 and 2012
(https://www.mancoosi.org/misc/), and encoded with PackUp [28] with all combi-
nations of 2–5 of the 5 minimization objectives. The shiftdesign and spot5 bench-
marks were obtained from MaxSAT Lib (https://www.cs.toronto.edu/maxsat-lib/)
and the single objective deconstructed according to [42], resulting in 3 objectives
for shiftdesign and 2 for spot5. The packup, shiftdesign, and lidr families have
unit coefficients in all objectives, i.e., are unweighted in MaxSAT terminology.
For a balanced and meaningful benchmark set, we randomly sampled instances
from each benchmark family, discarding instances that were solved in less than
five seconds by P -Minimal without core boosting, until we obtained 20 instances
per number of objectives and benchmark family.

4.1 Impact of Core Boosting on Solver Performance

We turn to the results of the evaluation. Since BiOptSat is specific to bi-
objective problems, we report on its performance solely on the 120 instances
with two objectives. Out of the 20 shiftdesign instances, all configurations of
P -Minimal and LowerBound solved exactly 1 instance. We therefore exclude
shiftdesign from the reported results.

Table 1 shows the number of solved instances and the cumulative runtime
(divided by 103 seconds) over the solved instances per benchmark family for
P -Minimal, BiOptSat, and LowerBound with and without core boosting.
Especially on the set covering and spot5 families, all algorithms benefit greatly
from core boosting. The core-boosted configurations often solve more than twice
as many instances as the variant without core boosting. With core boosting,
all solvers solve more set-cover-ep benchmarks in less cumulative runtime than
without core boosting.

Fig. 4 shows a per-instance runtime comparison of P -Minimal, BiOptSat,
and LowerBound, respectively, with and without core boosting. It can be seen
that many of the spot5 instances that could not be solver without core boosting
within the 1.5-hour time limit become trivial to solve after core boosting: 5 spot5
instances that P -Minimal does not solve without core boosting are solved in
under 5 seconds after core boosting. On the other benchmark families, core
boosting both allows for solving more instances and also drastically reduces
solving times.

The time spent in core boosting is for a great majority of the benchmark
instances negligible compared to time spent in the MO-MaxSAT solvers: only for

https://www.mancoosi.org/misc/
https://www.cs.toronto.edu/maxsat-lib/

Core Boosting in SAT-Based Multi-Objective Optimization 13

Table 1. Number of solved instances (#) and cumulative runtime over solved instances
in 103 seconds for each algorithm with and without core boosting (CB).

set-cover-sc set-cover-ep packup lidr ftp spot5
Algorithm CB #

∑
t #

∑
t #

∑
t #

∑
t #

∑
t #

∑
t

P -Minimal
no 14 22.74 34 26.82 13 10.10 7 7.97 6 3.53 2 0.33
yes 34 37.62 39 20.53 13 7.14 6 4.01 5 1.35 13 1.27

BiOptSat
no 8 4.84 18 8.09 8 0.65 6 4.61 7 8.56 2 0.35
yes 16 8.37 19 3.76 8 0.24 6 2.44 5 1.32 13 1.07

LowerBound
no 5 1.97 15 15.01 8 0.44 5 6.61 6 3.16 2 0.69
yes 13 3.55 18 6.86 8 0.22 5 5.04 5 1.39 13 6.79

10 (resp. 9) instances more than 5% of the runtime was spent in core boosting
in conjunction with P -Minimal (resp., BiOptSat or LowerBound). Core
boosting timed out on only a single benchmark instance that was solved without
core boosting.

As core boosting can be viewed as preprocessing, we also compare its im-
pact on solver runtimes to the impact of the recently-proposed MO-MaxSAT
preprocessor MaxPre 2.1 [26] implementing liftings of SAT and MaxSAT pre-
processing techniques to MO-MaxSAT. Table 2 shows the effect of core boosting
and MaxPre on the number of instances solved by P -Minimal, BiOptSat, and
LowerBound in terms of the change in number of solved instances. Overall, the
positive impact of core boosting is more significant than that of MaxPre. How-
ever, as MaxPre has a somewhat more positive impact on ftp and lidr families,
an interesting direction for further work would be to study how to interleave core
boosting and the various MaxPre preprocessing techniques for maximal positive
overall impact on runtimes.

101 102 103
101

102

103

5400

5400

no core boosting (s)

co
re

bo
os

ti
ng

(s
)

P -Minimal

101 102 103 5400
no core boosting (s)

BiOptSat

101 102 103 5400
no core boosting (s)

LowerBound

set-cover-sc set-cover-ep packup lidr ftp spot5

Fig. 4. Comparison of the per-instance CPU time of the P -Minimal (left), BiOptSat
(middle), and LowerBound (right) algorithms with and without core boosting.

14 C. Jabs et al.

Table 2. Change in number of solved instances (∆#) through core boosting (CB) and
preprocessing with MaxPre.

set-cover-sc set-cover-ep packup lidr ftp spot5
Algorithm Prepro. ∆# ∆# ∆# ∆# ∆# ∆#

P -Minimal
CB +20 +5 ±0 −1 −1 +11

MaxPre +1 −1 −1 ±0 +3 +1

BiOptSat
CB +8 +1 ±0 ±0 −2 +11

MaxPre ±0 ±0 ±0 ±0 +2 +1

LowerBound
CB +16 +6 +1 ±0 −1 +11

MaxPre +1 ±0 −1 +1 +1 ±0

4.2 Impact of Core Boosting on Search Space and Instance Size

Finally, we analyze the effects of core boosting on the search space and constraint
encodings during search, and how these relate to changes in solving time. Due
to space constraints, we focus on presenting results for P -Minimal; the data for
BiOptSat and LowerBound shows the same trends.

Fig. 5 (left) relates the impact of core boosting on solver performance with
reduction of search space achieved by core boosting. The change in search space
(on the x-axis) is measured as the (hyper)volume of the search space after core
boosting relative to the original volume, i.e., a value of 50% represents that the
search space volume was halved with 100% representing that core boosting has no
effect. In detail, the measure is V (Ocb)

V (O) · 100, where V (O) =
∏

O∈O
∑

li∈lits(O) ci
is the search space volume of a given set of objectives, i.e., the product of the
objective coefficient sums. The impact of core boosting on solver performance is
measured as tno cb−tcb

tno cb+tcb
, with t(no) cb denoting solving time of P -Minimal with

and without core boosting. We additionally assign value 1 (-1) for instances only
solved with (without) core boosting. Positive (negative) values therefore express
a positive (negative) impact of core boosting in terms of decreased solving time,
with 0 representing no impact. We observe that core boosting has the strongest
positive impact on solver performance on those instances that it significantly
reduces the search space of.

Fig. 5 (right) shows the combined number of clauses in the PB constraint
encodings in the MO-MaxSAT solver with and without core boosting. Here
clauses were counted at beginning of search based on the same initial solution to
eliminate differences due to diverging search trajectories. For most benchmark
families—esp. ones with unit coefficients in the objectives—the size of the en-
codings decreases due to core boosting. However, on the set covering instances
core boosting results in larger PB encodings. As core boosting nevertheless de-
creases overall solving time of also these set covering instances, there appears to
be no clear correlation between the changes in encoding sizes and solving times
in general.

Core Boosting in SAT-Based Multi-Objective Optimization 15

0 20 40 60 80 100
−1

−0.5

0

0.5

1

search space remaining (%)

so
lv

er
pe

rf
or

m
an

ce
im

pa
ct

104 105 106

104

105

106

no core boosting (# clauses)

co
re

bo
os

ti
ng

(#
cl

au
se

s)

set-cover-sc set-cover-ep packup lidr ftp spot5

Fig. 5. Left: relating the impact of core boosting on solver performance with reduc-
tion of search space achieved (P -Minimal). Right: number of clauses in all objective
encodings with and without core boosting.

As a further remark, we also experimented with resetting the internal SAT
solver between core boosting and invocation of P -Minimal to check whether
keeping the SAT solver state (learned clauses, variable activities, and polarities)
can have an effect on overall runtimes. We observed no meaningful difference
between resetting the SAT solver and keeping it alive throughout.

5 Conclusions

We proposed core boosting as an MO-MaxSAT reformulation technique that
maintains all Pareto-optimal solutions. Core boosting increases the objective
offsets of an MO-MaxSAT instance to match the ideal point without removing
any Pareto-optimal solutions through reformulating the MO-MaxSAT instance.
This results in a more restricted search space for a subsequently called MO-
MaxSAT solver. Through tight integration into SAT-based MO-MaxSAT solvers,
our empirical evaluation suggests that core boosting often has a significant pos-
itive impact on the runtimes of recently-proposed MO-MaxSAT algorithms, al-
lows for solving more instances, and is more impactful than present MaxSAT-
based MO-MaxSAT preprocessing techniques. The adaptation of core boosting
to multi-objective generalizations of core-guided optimization algorithms pro-
posed beyond MaxSAT, including CP and pseudo-Boolean optimization, is an
interesting direction for further work.

Acknowledgments. Work financially supported by Research Council of Finland
(grants 342145, 356046). The authors thank the Finnish Computing Competence In-
frastructure for computational and data storage resources.

Disclosure of Interests. The authors have no competing interests to declare.

16 C. Jabs et al.

References

1. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based opti-
mization in clasp. In: Dovier, A., Costa, V.S. (eds.) Technical Communications of
the 28th International Conference on Logic Programming, ICLP 2012, September
4–8, 2012, Budapest, Hungary. LIPIcs, vol. 17, pp. 211–221. Schloss Dagstuhl—
Leibniz-Zentrum für Informatik (2012). https://doi.org/10.4230/LIPICS.ICLP.
2012.211

2. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through
satisfiability testing. In: Kullmann, O. (ed.) Theory and Applications of Satisfia-
bility Testing—SAT 2009, 12th International Conference, SAT 2009, Swansea, UK,
June 30 – July 3, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5584,
pp. 427–440. Springer (2009). https://doi.org/10.1007/978-3-642-02777-2_39

3. Ansótegui, C., Didier, F., Gabàs, J.: Exploiting the structure of unsatisfiable
cores in MaxSAT. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25–31, 2015. pp. 283–289. AAAI Press (2015),
http://ijcai.org/Abstract/15/046

4. Ansótegui, C., Gabàs, J.: WPM3: an (in)complete algorithm for weighted par-
tial MaxSAT. Artif. Intell. 250, 37–57 (2017). https://doi.org/10.1016/J.ARTINT.
2017.05.003

5. Bacchus, F., Järvisalo, M., Martins, R.: Maximum satisfiability. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability—Second
Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 929–991.
IOS Press (2021). https://doi.org/10.3233/FAIA201008

6. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of Boolean cardinality con-
straints. In: Rossi, F. (ed.) Principles and Practice of Constraint Programming—
CP 2003, 9th International Conference, CP 2003, Kinsale, Ireland, September 29
– October 3, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2833, pp.
108–122. Springer (2003). https://doi.org/10.1007/978-3-540-45193-8_8

7. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT.
In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) Logic for Programming,
Artificial Intelligence, and Reasoning—19th International Conference, LPAR-19,
Stellenbosch, South Africa, December 14–19, 2013. Proceedings. Lecture Notes in
Computer Science, vol. 8312, pp. 96–111. Springer (2013). https://doi.org/10.1007/
978-3-642-45221-5_7, https://doi.org/10.1007/978-3-642-45221-5_7

8. Berg, J., Demirovic, E., Stuckey, P.J.: Core-boosted linear search for incomplete
MaxSAT. In: Rousseau, L., Stergiou, K. (eds.) Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research—16th International
Conference, CPAIOR 2019, Thessaloniki, Greece, June 4–7, 2019, Proceedings.
Lecture Notes in Computer Science, vol. 11494, pp. 39–56. Springer (2019).
https://doi.org/10.1007/978-3-030-19212-9_3

9. Berg, J., Järvisalo, M.: Weight-aware core extraction in SAT-based MaxSAT solv-
ing. In: Beck, J.C. (ed.) Principles and Practice of Constraint Programming—
23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 –
September 1, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10416,
pp. 652–670. Springer (2017). https://doi.org/10.1007/978-3-319-66158-2_42

10. Berg, J., Saikko, P., Järvisalo, M.: Subsumed label elimination for maximum sat-
isfiability. In: Kaminka, G.A., Fox, M., Bouquet, P., Hüllermeier, E., Dignum,

https://doi.org/10.4230/LIPICS.ICLP.2012.211
https://doi.org/10.4230/LIPICS.ICLP.2012.211
https://doi.org/10.4230/LIPICS.ICLP.2012.211
https://doi.org/10.4230/LIPICS.ICLP.2012.211
https://doi.org/10.1007/978-3-642-02777-2_39
https://doi.org/10.1007/978-3-642-02777-2_39
http://ijcai.org/Abstract/15/046
https://doi.org/10.1016/J.ARTINT.2017.05.003
https://doi.org/10.1016/J.ARTINT.2017.05.003
https://doi.org/10.1016/J.ARTINT.2017.05.003
https://doi.org/10.1016/J.ARTINT.2017.05.003
https://doi.org/10.3233/FAIA201008
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-540-45193-8_8
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-319-66158-2_42
https://doi.org/10.1007/978-3-319-66158-2_42

Core Boosting in SAT-Based Multi-Objective Optimization 17

V., Dignum, F., van Harmelen, F. (eds.) ECAI 2016—22nd European Confer-
ence on Artificial Intelligence, 29 August–2 September 2016, The Hague, The
Netherlands—Including Prestigious Applications of Artificial Intelligence (PAIS
2016). Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 630–638.
IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-630

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability—
Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336. IOS
Press (2021). https://doi.org/10.3233/FAIA336

12. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving. In: Biere, A.,
Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability—Second
Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 391–435.
IOS Press (2021). https://doi.org/10.3233/FAIA200992

13. Cabral, M., Janota, M., Manquinho, V.M.: SAT-based leximax optimisation al-
gorithms. In: Meel, K.S., Strichman, O. (eds.) 25th International Conference on
Theory and Applications of Satisfiability Testing, SAT 2022, August 2–5, 2022,
Haifa, Israel. LIPIcs, vol. 236, pp. 29:1–29:19. Schloss Dagstuhl—Leibniz-Zentrum
für Informatik (2022). https://doi.org/10.4230/LIPICS.SAT.2022.29

14. Cortes, J., Lynce, I., Manquinho, V.M.: New core-guided and hitting set algo-
rithms for multi-objective combinatorial optimization. In: Sankaranarayanan, S.,
Sharygina, N. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems—29th International Conference, TACAS 2023, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Paris, France, April 22–27, 2023, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 13994, pp. 55–73. Springer (2023). https://doi.org/10.1007/
978-3-031-30820-8_7

15. Devriendt, J., Gocht, S., Demirovic, E., Nordström, J., Stuckey, P.J.: Cutting to
the core of pseudo-Boolean optimization: Combining core-guided search with cut-
ting planes reasoning. In: Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intel-
ligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021. pp. 3750–3758. AAAI
Press (2021). https://doi.org/10.1609/AAAI.V35I5.16492

16. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003). https://doi.org/10.
1016/S1571-0661(05)82542-3

17. Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. J. Satisf.
Boolean Model. Comput. 2(1-4), 1–26 (2006). https://doi.org/10.3233/SAT190014

18. Ehrgott, M.: Multicriteria Optimization (2. ed.). Springer (2005). https://doi.org/
10.1007/3-540-27659-9

19. Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization
problems. Comput. Oper. Res. 34(9), 2674–2694 (2007). https://doi.org/10.1016/
J.COR.2005.10.003

20. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) Theory and Applications of Satisfiability Testing—SAT 2006, 9th
International Conference, Seattle, WA, USA, August 12–15, 2006, Proceedings.
Lecture Notes in Computer Science, vol. 4121, pp. 252–265. Springer (2006).
https://doi.org/10.1007/11814948_25

21. Gange, G., Berg, J., Demirovic, E., Stuckey, P.J.: Core-guided and core-boosted
search for CP. In: Hebrard, E., Musliu, N. (eds.) Integration of Constraint Pro-
gramming, Artificial Intelligence, and Operations Research—17th International

https://doi.org/10.3233/978-1-61499-672-9-630
https://doi.org/10.3233/978-1-61499-672-9-630
https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA336
https://doi.org/10.3233/FAIA200992
https://doi.org/10.3233/FAIA200992
https://doi.org/10.4230/LIPICS.SAT.2022.29
https://doi.org/10.4230/LIPICS.SAT.2022.29
https://doi.org/10.1007/978-3-031-30820-8_7
https://doi.org/10.1007/978-3-031-30820-8_7
https://doi.org/10.1007/978-3-031-30820-8_7
https://doi.org/10.1007/978-3-031-30820-8_7
https://doi.org/10.1609/AAAI.V35I5.16492
https://doi.org/10.1609/AAAI.V35I5.16492
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.3233/SAT190014
https://doi.org/10.3233/SAT190014
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1016/J.COR.2005.10.003
https://doi.org/10.1016/J.COR.2005.10.003
https://doi.org/10.1016/J.COR.2005.10.003
https://doi.org/10.1016/J.COR.2005.10.003
https://doi.org/10.1007/11814948_25
https://doi.org/10.1007/11814948_25

18 C. Jabs et al.

Conference, CPAIOR 2020, Vienna, Austria, September 21-24, 2020, Proceed-
ings. Lecture Notes in Computer Science, vol. 12296, pp. 205–221. Springer (2020).
https://doi.org/10.1007/978-3-030-58942-4_14

22. Guerreiro, A.P., Cortes, J., Vanderpooten, D., Bazgan, C., Lynce, I., Manquinho,
V.M., Figueira, J.R.: Exact and approximate determination of the Pareto front
using minimal correction subsets. Comput. Oper. Res. 153, 106153 (2023). https:
//doi.org/10.1016/J.COR.2023.106153

23. Heras, F., Larrosa, J., de Givry, S., Schiex, T.: 2006 and 2007 Max-SAT Evalua-
tions: Contributed instances. J. Satisf. Boolean Model. Comput. 4(2-4), 239–250
(2008). https://doi.org/10.3233/SAT190046

24. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver.
J. Satisf. Boolean Model. Comput. 11(1), 53–64 (2019). https://doi.org/10.3233/
SAT190116

25. Ihalainen, H., Berg, J., Järvisalo, M.: Refined core relaxation for core-guided
MaxSAT solving. In: Michel, L.D. (ed.) 27th International Conference on Prin-
ciples and Practice of Constraint Programming, CP 2021, Montpellier, France
(Virtual Conference), October 25–29, 2021. LIPIcs, vol. 210, pp. 28:1–28:19.
Schloss Dagstuhl—Leibniz-Zentrum für Informatik (2021). https://doi.org/10.
4230/LIPICS.CP.2021.28

26. Jabs, C., Berg, J., Ihalainen, H., Järvisalo, M.: Preprocessing in SAT-based multi-
objective combinatorial optimization. In: Yap, R.H.C. (ed.) 29th International Con-
ference on Principles and Practice of Constraint Programming, CP 2023, August
27–31, 2023, Toronto, Canada. LIPIcs, vol. 280, pp. 18:1–18:20. Schloss Dagstuhl—
Leibniz-Zentrum für Informatik (2023). https://doi.org/10.4230/LIPICS.CP.2023.
18

27. Jabs, C., Berg, J., Niskanen, A., Järvisalo, M.: MaxSAT-based bi-objective Boolean
optimization. In: Meel, K.S., Strichman, O. (eds.) 25th International Conference
on Theory and Applications of Satisfiability Testing, SAT 2022, August 2–5, 2022,
Haifa, Israel. LIPIcs, vol. 236, pp. 12:1–12:23. Schloss Dagstuhl—Leibniz-Zentrum
für Informatik (2022). https://doi.org/10.4230/LIPICS.SAT.2022.12

28. Janota, M., Lynce, I., Manquinho, V.M., Marques-Silva, J.: PackUp: Tools for
package upgradability solving. J. Satisf. Boolean Model. Comput. 8(1/2), 89–94
(2012). https://doi.org/10.3233/SAT190090

29. Joshi, S., Martins, R., Manquinho, V.M.: Generalized totalizer encoding for pseudo-
Boolean constraints. In: Pesant, G. (ed.) Principles and Practice of Constraint
Programming—21st International Conference, CP 2015, Cork, Ireland, August 31
– September 4, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9255,
pp. 200–209. Springer (2015). https://doi.org/10.1007/978-3-319-23219-5_15

30. Koshimura, M., Nabeshima, H., Fujita, H., Hasegawa, R.: Minimal model genera-
tion with respect to an atom set. In: Peltier, N., Sofronie-Stokkermans, V. (eds.)
Proceedings of the 7th International Workshop on First-Order Theorem Proving,
FTP 2009, Oslo, Norway, July 6–7, 2009. CEUR Workshop Proceedings, vol. 556.
CEUR-WS.org (2009), https://ceur-ws.org/Vol-556/paper06.pdf

31. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-
SAT solver. J. Satisf. Boolean Model. Comput. 8(1/2), 95–100 (2012). https://doi.
org/10.3233/SAT190091, https://doi.org/10.3233/sat190091

32. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisf. Boolean
Model. Comput. 7(2-3), 59–6 (2010). https://doi.org/10.3233/SAT190075, https:
//doi.org/10.3233/sat190075

https://doi.org/10.1007/978-3-030-58942-4_14
https://doi.org/10.1007/978-3-030-58942-4_14
https://doi.org/10.1016/J.COR.2023.106153
https://doi.org/10.1016/J.COR.2023.106153
https://doi.org/10.1016/J.COR.2023.106153
https://doi.org/10.1016/J.COR.2023.106153
https://doi.org/10.3233/SAT190046
https://doi.org/10.3233/SAT190046
https://doi.org/10.3233/SAT190116
https://doi.org/10.3233/SAT190116
https://doi.org/10.3233/SAT190116
https://doi.org/10.3233/SAT190116
https://doi.org/10.4230/LIPICS.CP.2021.28
https://doi.org/10.4230/LIPICS.CP.2021.28
https://doi.org/10.4230/LIPICS.CP.2021.28
https://doi.org/10.4230/LIPICS.CP.2021.28
https://doi.org/10.4230/LIPICS.CP.2023.18
https://doi.org/10.4230/LIPICS.CP.2023.18
https://doi.org/10.4230/LIPICS.CP.2023.18
https://doi.org/10.4230/LIPICS.CP.2023.18
https://doi.org/10.4230/LIPICS.SAT.2022.12
https://doi.org/10.4230/LIPICS.SAT.2022.12
https://doi.org/10.3233/SAT190090
https://doi.org/10.3233/SAT190090
https://doi.org/10.1007/978-3-319-23219-5_15
https://doi.org/10.1007/978-3-319-23219-5_15
https://ceur-ws.org/Vol-556/paper06.pdf
https://doi.org/10.3233/SAT190091
https://doi.org/10.3233/SAT190091
https://doi.org/10.3233/SAT190091
https://doi.org/10.3233/SAT190091
https://doi.org/10.3233/sat190091
https://doi.org/10.3233/SAT190075
https://doi.org/10.3233/SAT190075
https://doi.org/10.3233/sat190075
https://doi.org/10.3233/sat190075

Core Boosting in SAT-Based Multi-Objective Optimization 19

33. Malioutov, D., Meel, K.S.: MLIC: A MaxSAT-based framework for learning in-
terpretable classification rules. In: Hooker, J.N. (ed.) Principles and Practice of
Constraint Programming—24th International Conference, CP 2018, Lille, France,
August 27–31, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11008,
pp. 312–327. Springer (2018). https://doi.org/10.1007/978-3-319-98334-9_21

34. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engi-
neering. Structural and Multidisciplinary Optimization 26, 369–395 (04 2004).
https://doi.org/10.1007/s00158-003-0368-6

35. Marques, R., Russo, L.M.S., Roma, N.: Flying tourist problem: Flight time and
cost minimization in complex routes. Expert Syst. Appl. 130, 172–187 (2019).
https://doi.org/10.1016/J.ESWA.2019.04.024

36. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT
solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability—Second Edition, Frontiers in Artificial Intelligence and Applications,
vol. 336, pp. 133–182. IOS Press (2021). https://doi.org/10.3233/FAIA200987

37. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum sat-
isfiability. Computing Research Repository abs/0712.1097 (2007), http://arxiv.
org/abs/0712.1097

38. Martins, R.: ASP to MaxSAT: Metro, ShiftDesign, TimeTabling and BioRepair.
In: Ansotegui, C., Bacchus, F., Järvislo, M., Martins, R. (eds.) MaxSAT Evaluation
2017: Solver and Benchmark Descriptions. Department of Computer Science Series
of Publications B, vol. B-2017-2, p. 27. University of Helsinki (2017), http://hdl.
handle.net/10138/228949

39. Martins, R., Joshi, S., Manquinho, V.M., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) Principles and Practice of Constraint
Programming—20th International Conference, CP 2014, Lyon, France, Septem-
ber 8–12, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8656, pp.
531–548. Springer (2014). https://doi.org/10.1007/978-3-319-10428-7_39

40. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft car-
dinality constraints. In: O’Sullivan, B. (ed.) Principles and Practice of Constraint
Programming—20th International Conference, CP 2014, Lyon, France, Septem-
ber 8–12, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8656, pp.
564–573. Springer (2014). https://doi.org/10.1007/978-3-319-10428-7_41

41. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, July 27–31, 2014, Québec City, Québec,
Canada. pp. 2717–2723. AAAI Press (2014). https://doi.org/10.1609/AAAI.V28I1.
9124

42. Paxian, T., Raiola, P., Becker, B.: On preprocessing for weighted MaxSAT. In: Hen-
glein, F., Shoham, S., Vizel, Y. (eds.) Verification, Model Checking, and Abstract
Interpretation—22nd International Conference, VMCAI 2021, Copenhagen, Den-
mark, January 17–19, 2021, Proceedings. Lecture Notes in Computer Science, vol.
12597, pp. 556–577. Springer (2021). https://doi.org/10.1007/978-3-030-67067-2_
25

43. Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 37–53. Springer (2018). https://doi.org/10.1007/
978-3-319-94144-8_3

44. Piotrów, M.: UWrMaxSat: Efficient solver for MaxSAT and pseudo-Boolean prob-
lems. In: 32nd IEEE International Conference on Tools with Artificial Intelligence,

https://doi.org/10.1007/978-3-319-98334-9_21
https://doi.org/10.1007/978-3-319-98334-9_21
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1016/J.ESWA.2019.04.024
https://doi.org/10.1016/J.ESWA.2019.04.024
https://doi.org/10.3233/FAIA200987
https://doi.org/10.3233/FAIA200987
http://arxiv.org/abs/0712.1097
http://arxiv.org/abs/0712.1097
http://hdl.handle.net/10138/228949
http://hdl.handle.net/10138/228949
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-319-10428-7_39
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1609/AAAI.V28I1.9124
https://doi.org/10.1609/AAAI.V28I1.9124
https://doi.org/10.1609/AAAI.V28I1.9124
https://doi.org/10.1609/AAAI.V28I1.9124
https://doi.org/10.1007/978-3-030-67067-2_25
https://doi.org/10.1007/978-3-030-67067-2_25
https://doi.org/10.1007/978-3-030-67067-2_25
https://doi.org/10.1007/978-3-030-67067-2_25
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-319-94144-8_3

20 C. Jabs et al.

ICTAI 2020, Baltimore, MD, USA, November 9–11, 2020. pp. 132–136. IEEE
(2020). https://doi.org/10.1109/ICTAI50040.2020.00031

45. Soh, T., Banbara, M., Tamura, N., Le Berre, D.: Solving multiobjective discrete
optimization problems with propositional minimal model generation. In: Beck, J.C.
(ed.) Principles and Practice of Constraint Programming—23rd International Con-
ference, CP 2017, Melbourne, VIC, Australia, August 28 – September 1, 2017,
Proceedings. Lecture Notes in Computer Science, vol. 10416, pp. 596–614. Springer
(2017). https://doi.org/10.1007/978-3-319-66158-2_38

46. Terra-Neves, M., Lynce, I., Manquinho, V.M.: Multi-objective optimization
through Pareto minimal correction subsets. In: Lang, J. (ed.) Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJ-
CAI 2018, July 13–19, 2018, Stockholm, Sweden. pp. 5379–5383. ijcai.org (2018).
https://doi.org/10.24963/IJCAI.2018/757

https://doi.org/10.1109/ICTAI50040.2020.00031
https://doi.org/10.1109/ICTAI50040.2020.00031
https://doi.org/10.1007/978-3-319-66158-2_38
https://doi.org/10.1007/978-3-319-66158-2_38
https://doi.org/10.24963/IJCAI.2018/757
https://doi.org/10.24963/IJCAI.2018/757

	Core Boosting in SAT-Based Multi-Objective Optimization

