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Abstract. Various real-world settings give rise to combinatorial opti-
mization problems with multiple conflicting objectives, motivating the
development of practical approaches to the challenging task of find-
ing Pareto-optimal solutions to declarative models of multi-objective
problems. In this work we focus on multi-objective optimization over
pseudo-Boolean constraints (MO-PBO) as an extension of propositional
clauses and, at the same time, an important class of 0-1 linear con-
straints. We provide a first-of-kind cross-community evaluation of a se-
lection of recently-proposed approaches applicable to MO-PBO, includ-
ing first implementations of native MO-PBO algorithms we provide as
well as approaches based on integer linear programming techniques and a
translation-based approach to MO-MaxSAT, providing insights into the
current state-of-the-art approaches to MO-PBO. In terms of algorithmic
advances, we engineer MO-PBO solvers by harnessing recent advances in
decision procedures for pseudo-Boolean constraints in order to lift multi-
objective approaches recently developed for multi-objective optimization
under propositional constraints (i.e., MO-MaxSAT) to the realm of MO-
PBO. Extending on recent work on certified MO-MaxSAT solving, we
also realize certified multi-objective pseudo-Boolean optimization by im-
plementing proof logging for both our native MO-PBO approach and the
translation-based MO-MaxSAT approach.

Keywords: Multi-objective optimization · pseudo-Boolean optimiza-
tion · empirical evaluation · certified optimization

1 Introduction

The declarative approach—from mixed integer linear programming (ILP) [12] to
finite-domain constraint optimization [64] and Boolean satisfiability (SAT) [8]
based approaches including maximum satisfiability (MaxSAT) [3] together with
its extensions to optimization modulo theories [62], and pseudo-Boolean opti-
mization [66]—is key to efficiently solving various NP-hard combinatorial opti-
mization problems arising from real-world settings. Various different algorithmic
? Work financially supported by Academy of Finland under grants 356046 and 362987.

The authors thank the Finnish Computing Competence Infrastructure (FCCI) for
computational and data storage resources.

http://orcid.org/0000-0003-3532-696X
http://orcid.org/0000-0001-7660-8061
http://orcid.org/0000-0003-2572-063X


2 Jabs et al.

techniques have been developed for the various declarative paradigms, ranging
from linear programming based branch-and-cut algorithms standardly employed
in ILP [12] to unsatisfiability-based search via iterative use of decision procedures
in logic-based formalisms such as MaxSAT and its extensions [3]. This richness
can be considered a virtue, with each paradigm offering its distinct features in
terms of the constraint language and algorithmic approaches.

From MaxSAT to ILP, a majority of work on practical algorithms and their
implementations towards developing increasingly effective declarative approaches
to combinatorial optimization has focused on single-objective optimization prob-
lems. As real-world settings often intrinsically involve multiple conflicting objec-
tives [29], beyond a plethora of heuristic approaches to multi-objective optimiza-
tion [14], there has recently been interest in extending the reach of declarative
approaches to enable efficiently solving multi-objective combinatorial optimiza-
tion problems in various declarative paradigms, including ILP [42,25,34], finite-
domain constraint optimization [55,67,10], and MaxSAT [68,15,48]. Some ap-
proaches address more restrictive settings, being geared to either e.g. bi-objective
problems [10,48] or leximax optimization [11], while others do not restrict the
number of objectives and in particular enable computing representative Pareto-
optimal solutions [68,15] for every non-dominated point in the solution space—a
task which is arguable noticeably more challenging than finding a representative
optimal solution in the single-objective case.

In this work, we focus on engineering and evaluating practical approaches to
solving multi-objective optimization problems expressed as pseudo-Boolean (PB)
constraints [66], i.e., linear inequalities with integer coefficients over binary vari-
ables. Also known as 0-1 or binary linear constraints, PB constraints constitute
on one hand a central fragment of integer programming, and on the other hand
a natural generalization of conjunctive normal form clausal propositional con-
straints employed in SAT and MaxSAT. What makes multi-objective pseudo-
Boolean optimization (MO-PBO) particularly interesting from the algorithmic
perspective is that, firstly, recent approaches to multi-objective integer-linear
programming [42,25,34] are directly applicable, and, secondly—as we will de-
tail in this paper—recent advances in MO-MaxSAT can be harnessed in the
context of MO-PBO either (i) by lifting multi-objective MaxSAT solving ap-
proaches [68,15,48] to obtain their native MO-PBO counterparts by employ-
ing recent advances in PB decision procedures [33,21,22], or (ii) by translating
MO-PBO instances to MO-MaxSAT and employing MO-MaxSAT solvers. Con-
trasting the multi-objective ILP approaches, both of these two approaches allow
for realizing—to the best of our knowledge for the first time—certified MO-
PBO solving, i.e., integrating proof logging capabilities to MO-PBO solvers for
obtaining certificates as guarantees for outputting exactly the sought-after so-
lutions with reasonable overhead. The certificates are achieved by harnessing
recent progress in certified MO-MaxSAT [47] and MaxSAT solving [72,6,45,5]
via the VeriPB proof format [38,9]. Furthermore, we perform a first-of-kind
cross-community evaluation of a wide selection of recently-proposed approaches
applicable to MO-PBO, including the native MO-PBO algorithms we propose,
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the translation-based approach to MO-MaxSAT employing various recently-
proposed MO-MaxSAT solvers, and approaches developed for multi-objective
ILP solving. The results show that—both ones based on logical reasoning and
those relying on classical ILP techniques—the three different approaches each
have their role in contributing to the state of the art in MO-PBO solving. We
provide open-source implementations of the MO-MaxSAT-based and native MO-
PBO approaches, constituting the first certifying solvers for Pareto optimization
under pseudo-Boolean constraints. The implementation together with bench-
marks used, and empirical data reported on in this paper are available at

https://bitbucket.org/coreo-group/multi-objective-pbo.

2 Multi-objective Pseudo-Boolean Optimization

A literal ` is a {0, 1}-valued Boolean variable x or its negation x. A normalized
pseudo-Boolean (PB) constraint is a 0-1 linear inequality of form C = (S ≥ b),
where S =

∑k
i=1 ci`i is called a PB expression, ci are positive integers, and b a

non-negative integer often called the bound of the constraint. A PB formula is
a conjunction of PB constraints F = (C1 ∧ C2 ∧ · · · ∧ CN ), often represented as
a set of constraints.

An assignment α assigns a value in {0, 1} to each variable x. An assignment
α is extended to literals via α(x) = 1 − α(x) and further to PB expressions,
constraints, and formulas, respectively, via

α(S) =

k∑
i=1

ciα(`i), α(C) =

{
1 if α(S) ≥ b

0 otherwise
, α(F ) = min{α(C) | C ∈ F}.

An assignment α for which α(F ) = 1 satisfies F , in which case α is a solution
to F . When convenient, we view an assignment α as the set of literals α assigns
to 1.

We write r ⇒ (
∑k

i=1 ci`i ≥ b) for the reified constraint br +
∑k

i=1 ci`i ≥ b

expressing that the variable r implies the constraint
∑k

i=1 ci`i ≥ b, and respec-
tively r ⇐ (

∑k
i=1 ci`i ≥ b) for Mr+

∑k
i=1 ci`i ≥ M where M =

∑k
i=1 ci − b+ 1

expressing that the constraint implies r.
A multi-objective pseudo-Boolean optimization (MO-PBO) instance consists

of a formula F , and a tuple of p linear objective functions (O1, . . . , Op), rep-
resented as PB expressions. For two solutions α and β to F , α dominates β
(in terms of Pareto optimality [29]) if α(Oi) ≤ β(Oi) for all i = 1, . . . , p, and
α(Oi) < β(Oi) for some i. A solution α is Pareto-optimal if no other solution
to F dominates α. We consider the MO-PBO task of finding the non-dominated
set

{(α(O1), . . . , α(Op)) | α is Pareto-optimal},

i.e., the objective values of all Pareto-optimal solutions, and typically one so-
lution corresponding to each element in the non-dominated set. Note that this
task is slightly different from finding all Pareto-optimal solutions, as there might

https://bitbucket.org/coreo-group/multi-objective-pbo
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be multiple solutions corresponding to the same element in the non-dominated
set.

3 Relating MO-PBO to MO-MaxSAT and MO-ILP

Closely related to MO-PBO are multi-objective maximum satisfiability (MO-
MaxSAT) and multi-objective integer linear programming (MO-ILP). In con-
trast to MO-PBO, in MO-MaxSAT all constraints are clauses, i.e., at-least-one
constraints that have coefficients ci = 1 and bound b = 1. MO-ILP differs from
MO-PBO in that variables can take any integer values, with constraints taking
the form

∑k
i=1 cixi ≥ b with ci, b ∈ Z.

3.1 MO-MaxSAT

Employing an MO-MaxSAT algorithm to solve MO-PBO instances requires first
encoding the PB constraints as clauses [28,49]. The encoded clausal instance can
then be solved with an MO-MaxSAT solver to find the non-dominated set. In
terms of practical approaches to MO-MaxSAT solving, Soh et al. [53,68] pro-
posed an MO-MaxSAT algorithm based on enumeration of so-called P -minimal
models. More recently, Cortes et al. [15] proposed a lower-bounding algorithm
that uses P -minimal as a subroutine, Guerreiro et al. [41] extended on previous
work employing minimal correction set enumeration to find Pareto-optimal solu-
tions [71], and Jabs et al. [48] proposed BiOptSat, a MaxSAT-based algorithm
applicable to bi-objective problems. In our work, we focus on the P -minimal and
BiOptSat algorithm and discuss them in more detail in Section 4.

3.2 MO-ILP

As (MO-)PBO is a special case of (MO-)ILP, MO-ILP algorithms can be directly
applied to solve MO-PBO instances. Various algorithms for MO-ILP have been
recently proposed [42,70,18,69,36,63,25,35,34,4]. The main approaches to MO-
ILP can be categorized into two classes: (i) branch-and-bound (B&B) search al-
gorithms [52] and (ii) algorithms that solve a sequence of single-objective scalar-
izations of the MO problem [18].

Multi-objective B&B algorithms extend upper and lower bounds, used in
single-objective B&B for pruning of search nodes, to so-called upper and lower
bound sets [30]. Furthermore, the branching rules are extended with objective /
Pareto branching [70], where the search space is split in objective space rather
than variable space. Forget et al. [35] present a B&B framework for MO-ILP,
which was later on extended with objective branching for any number of objec-
tives [34].

Another approach to MO-ILP solving is based on single-objective scalariza-
tions of the multi-objective problem [18,25]. Typically, optimal solutions to the
single-objective scalarizations will be guaranteed to be Pareto-optimal with re-
spect to the original problem instance. After finding one such optimal solution,
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Input: F, (O1, . . . , Op)
1 FW ← F sat, α ← Oracle(FW)
2 while sat do
3 while sat do
4 FW ← FW ∧

∨p
i=1 Oi < α(Oi)

5 sat, α ← Oracle(FW∧
∧p

i=1 Oi ≤ α(Oi))
6 yield α as Pareto-optimal
7 sat, α ← Oracle(FW)

Algorithm 1: The P -minimal algorithm.

the algorithm will then split the search space into multiple regions, and solve
another scalarization for each subregion. Dominguez-Rios et al. [25] improve on
previous work in this line by proposing a new strategy of selecting which search
region to explore next, and a new strategy of partitioning the search space when
a solution is found.

4 Extending MO-MaxSAT Algorithms to PBO

As one of our contributions, we provide an open-source native MO-PBO level im-
plementation of the state-of-the-art MO-MaxSAT algorithms P -minimal [53,68]
and BiOptSat [48]. For this, we phrase the algorithms in terms of MO-PBO
and explain how to adapt them to work on PB constraints natively by employing
a decision procedure for PB constraints.

4.1 P -minimal

The P -minimal algorithm [53,68] for MO-MaxSAT can be viewed as multi-
objective solution-improving search that iteratively queries a constraint oracle
for a solution α to the constraints, and then restricts the search space with fur-
ther constraints that exclude all solutions dominated by α. This continues until
the non-dominated set is found.

Algorithm 1 details P -minimal. Here Oracle(F ) denotes a query to a con-
straint oracle for a solution to the formula F . The query returns a Boolean sat
indicating whether F has solutions, and one such solution α in the positive case.
After initializing the working formula FW to F and obtaining a solution α of
FW, the main loop of P -minimal (Lines 2–7 of Algorithm 1) iteratively adds a
disjunction of constraints (in practice turned into a conjunction via reification,
see details in next paragraph) that we call a Pareto dominance cut or PD cut for
short, to block all solutions dominated by α to FW on Line 4. Then it queries the
oracle for a solution that dominates α on Line 5 by using temporary constraints
that require the next solution to dominate α. When the oracle determines that
there are no solutions that dominate α, α is guaranteed to be Pareto-optimal,
and the search then continues by dropping the temporary constraints.



6 Jabs et al.

P -minimal BiOptSat
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Fig. 1. Illustrations of the search trajectories of the P -minimal and BiOptSat algo-
rithms.

Example 1. Let F and (O1, O2) constitute an MO-PBO instance with the non-
dominated set {(1, 5), (3, 3), (5, 1)}. Figure 1 illustrates this instance in objective
space where the shaded area represents objective values for which no solutions
exist. Assume that P -minimal is invoked on this instance and that on Line 1
we obtain α with O1(α) = 7 and O2(α) = 8. P -minimal now introduces a
PD cut (O1 < 7 ∨ O2 < 8) and temporarily forces the next found solution to
dominate α, by adding the constraints O1 ≤ 7 and O2 ≤ 8. By continuing the
algorithm, we might find solutions with objective values (6, 5), (4, 4), and (3, 3),
as illustrated in Figure 1 (left). After this, the oracle call on Line 5 returns
false, and the temporary constraints are dropped. On Line 7 we might then
find a solution with objective values (2, 8) (illustrated with a dashed arrow). A
possible search trajectory discovering the entire non-dominated set before the
algorithm terminates is illustrated on the left in Figure 1.

In the context of MO-MaxSAT, P -minimal is realized by instantiating Oracle
as an incremental SAT-solver and encoding bound constraints (Oi < α(Oi)) on
the objectives as clauses. To lift P -minimal to MO-PBO, we use the pseudo-
Boolean conflict-driven conflict learning [60] solver RoundingSat [33,21,22] as
the oracle. The disjunctive constraint

∨p
i=1 Oi < α(Oi) is represented conjunc-

tively as the reified constraints ri ⇒ (Oi < α(Oi)) and the clause
∑p

i=1 ri ≥ 1.
The temporary constraints are realized via reified constraints and an incremen-
tal assumption interface [27,60] offered by RoundingSat out of the box. All in
all, operating natively on the level of MO-PBO significantly simplifies the P -
minimal algorithm compared to the case of MO-MaxSAT, as on the MO-PBO
level there is no need to resort to (complex) clausal encodings of PB constraints.

4.2 BiOptSat

The BiOptSat framework [48] (see Algorithm 2) is specific to solving prob-
lems with two objectives, and works by enumerating the non-dominated points
in increasing order for one objective and in decreasing order for the other. The
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Input: F, (O1, O2)
1 FW ← F sat, α ← Oracle(FW)
2 while sat do
3 α ← Minimize(O1 s.t. FW)
4 α ← Minimize(O2 s.t. FW ∧O1 ≤ α(O1))
5 yield α as Pareto-optimal
6 FW ← FW ∧O2 < α(O2)
7 sat, α ← Oracle(FW)

Algorithm 2: The BiOptSat framework.

approach first minimizes the first objective (Line 3), and then subsequently min-
imizes the second objective while fixing the value of the first (Line 4). Thereby,
the obtained solution is guaranteed to be Pareto-optimal. The search then re-
peats after forcing the second objective to improve. This search strategy is also
known as the lexicographic method [73,58].

Practical instantiations [48] of BiOptSat use solution-improving search for
the minimization procedure on Line 4 but differ in how the minimization pro-
cedure over the first objective (Line 3) is instantiated. We focus on the variants
based on Sat-Unsat (solution-improving search) and OLL [2,61,44] as the ones
deemed most effective in previous work on MO-MaxSAT. In the Sat-Unsat vari-
ant, the oracle is queried for increasingly better solutions with respect to O1

by temporarily adding the constraint O1 < O1(α) to the oracle, where α is the
last-found solution. In contrast, in the OLL variant the oracle is queried for
a solution setting all literals in O1 to false. If such a solution does not exist,
the oracle provides an explanation of the inconsistency, which is subsequently
resolved by OLL and the objective reformulated. Both BiOptSat variants are
implemented as described in previous work on solution-improving search and
OLL for pseudo-Boolean optimization [23].

Example 2. Similarly to Example 1, we detail a possible search trajectory of
BiOptSat in the Sat-Unsat variant on the right in Figure 1. In minimizing O1

BiOptSat Sat-Unsat starts by obtaining a solution with objective values (7, 8).
Next, the oracle is queried again with the additional constraint O1 < 7 added.
This process might lead to first finding a solution at (4, 7) and then one at (1, 7),
after which the oracle call with the additional constraint O1 < 1 returns false.
BiOptSat now continues to minimizing O2 with the same solution-improving
search procedure, while forcing the objective value of O1 to remain minimal, but
adding the constraint O1 ≤ 1. Once O2 cannot be further minimized at (1, 5),
the solution is returned as Pareto-optimal, the constraints on O1 are dropped,
and the constraint O2 < 5 is added to the oracle. The loop on Line 2 then starts
over, and the entire instance is solved as illustrated in the right-hand side of
Figure 1.
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5 Certifying Pareto Optimality

Our second contribution concerns certified multi-objective pseudo-Boolean opti-
mization. Proof logging—i.e., writing a machine-checkable proof of the reasoning
steps performed by a solver, and afterwards verifying the reasoning steps made
by the solver to obtain a guarantee on the correctness of the result produced—
has become a readily-available feature in state-of-the-art SAT solvers [39,16,17]
and has more recently been extended to single-objective MaxSAT [72,6,45,5]
and single-objective PBO solvers [65]. The line of work on proof logging single-
objective optimization is mainly based on the pseudo-Boolean VeriPB proof
format [38,9]. In addition to a single objective, VeriPB supports certifying that
the computed solutions are minimal with respect to a user-specified preorder
over solutions. While originally proposed for proof logging symmetry and dom-
inance breaking [9], the preorder in VeriPB has more recently been shown to
generalize an objective in the sense of allowing VeriPB to be used to certify
the correctness of a discovered non-dominated set in the multi-objective setting,
without extending the proof system itself [47].

In this section, we detail how the same proof logging approach proposed
for MO-MaxSAT [47] can be used for proof logging MO-PBO solvers, either
based on a translation to the MaxSAT paradigm or by natively operating on
PB constraints. For the sake of brevity, we will not explain the VeriPB proof
system in detail, we refer the interested reader instead to previous work on
VeriPB [38,9], especially in the multi-objective setting [47]. While early work
on verifying results from integer programming solvers exists [13,43], we are not
aware of any work on verifying MO-ILP results.

5.1 Proof Logging for MO-PBO via MO-MaxSAT

Since MO-PBO can be encoded as MO-MaxSAT and solved by existing MO-
MaxSAT solvers, a natural approach toward proof-logging MO-PBO is to make
use of the existing approaches to creating VeriPB proofs for various MO-
MaxSAT algorithms, including P -minimal and BiOptSat [47]. However, this
requires certifying the translation from an MO-PBO instance (F, (O1, . . . , Op))
to a (clausal) MO-MaxSAT instance (As-Clauses(F ), (O1, . . . , Op)). Intuitively,
the translation should guarantee that (i) any solution of F can be extended into
a solution of As-Clauses(F ), and that (ii) any solution of As-Clauses(F ) is a
solution of F . In practice, the certification of the translation is integrated into the
proof produced by the certifying MO-MaxSAT solver, treating the translation
of the PB constraints, in the same way as any other reasoning step of the solver.
Together with certificates for the clausal reasoning steps of the MO-MaxSAT
solvers described in [47], we end up with a single VeriPB proof that guarantees
that at least one solution for each non-dominated point of the original MO-PBO
instance has been found.

As a choice for encoding PB constraints to clauses for translating MO-PBO
instances to MO-MaxSAT we employ the generalized totalizer encoding [49] as an
often-employed encoding in MaxSAT literature. A generalized totalizer encoding
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can be viewed as a binary tree that has the literals in the PB constraint and
their coefficients as leaves. The root of the tree and all internal nodes correspond
to a set of auxiliary variables that—informally speaking—count the sum of the
coefficients of the literals assigned to 1 at the leafs of the subtree rooted at that
node. The PB constraint is enforced by a unit clause over the auxiliary variables
at the root node that corresponds to its bound.

In order to certify the derivation of the clauses, we use a procedure origi-
nally described for totalizers [72] and later extended to the generalized totalizer
encoding [47]. This procedure introduces the semantic definitions of the auxil-
iary variables at each node as auxiliary PB constraints in the proof and derives
the clauses in the encoding from these definitions. However, the semantics in
the proof are stricter than the produced encoding. Concretely, in the proof the
output variables have semantics encoding equality to the PB expression exceed-
ing a certain value, while the clauses in the generalized totalizer encoding only
encode an implication. In order to avoid issues where a solution found in the
MO-MaxSAT solver does not satisfy all constraints in the proof due to these
differing semantics, we remove all auxiliary constraints from the VeriPB proof
with the help of the derived deletion rule [38,9] once the clausal encoding for a
PB constraint is generated.

5.2 Native Proof Logging for MO-PBO

The native MO-PBO approaches (recall Section 4) can also be extended to gener-
ate machine-checkable certificates. To do so, we use the VeriPB setup proposed
in [47], encoding Pareto dominance as a preorder in the proof. In VeriPB format
this preorder for objectives (O1, . . . , Op) is expressed as p constraints Oi�α≤ Oi�β ,
where Oi �α is Oi under the assignment α. The formula formed by these con-
straints is true iff α dominates β or is equal to it. Since VeriPB verifies for
redundant constraint that is added to the proof that a witness exists which is
at least as good with respect to the preorder than any solutions the redundant
constraint excludes, by loading the Pareto preorder as defined above, VeriPB
ensures that Pareto-optimal solutions can only be excluded from the proof via
the explicit solution-exclusion rule [47, Theorem 1].

Certifying a PD cut in the proof after finding the solution α is then done in
the same way as in the MO-MaxSAT setting: First, a constraint that excludes all
solutions that are dominated by α or have equal objective values (except for α
itself) is added to the proof. This constraint is redundant, which can be justified
using α as the witness, i.e., for any solution to the instance that does not satisfy
this new constraint, α constitutes a solution that is at least as good with respect
to Pareto optimality. Next, α is excluded from consideration with the help of
the solution logging rule. Lastly, by combining the constraints from the previous
steps, the PD cut itself can be derived.

Example 3. Recall the instance in Example 1. Assume that (i) O1 = 2x2 + x3 +
2x4 +3x5 and O2 = 3x1 + x2 +2x3 + x4, (ii) F includes no other variables, and
(iii) P -minimal has found the Pareto-optimal solution α = {x1, x2, x3, x4, x5} for
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Table 1. Example proof for certifying a PD cut.

ID Pseudo-Boolean Constraint Comment

Input constraints and potential previous proof steps
[a] 8w1 + 2x2 + x3 + 2x4 + 3x5 ≥ 8 witness: {w1}
[b] w1 + 2x2 + x3 + 2x4 + 3x5 ≥ 1 witness: {w1}
[c] 3w2 + 3x1 + x2 + 2x3 + x4 ≥ 3 witness: {w2}
[d] 5w2 + 3x1 + x2 + 2x3 + x4 ≥ 5 witness: {w2}
[e] 5w1 + 5w2 + x1 + x2 + x3 + x4 + x5 ≥ 5 witness: α ∪ {w1, w2}
[f ] x1 + x2 + x3 + x4 + x5 ≥ 1 Log the solution α
[g] w1 + w2 ≥ 1 PD cut

which (α(O1), α(O2)) = (1, 5). Table 1 shows example proof steps required for
certifying a PD cut based on α. Steps [a], [b], [c], and [d] introduce new auxiliary
variables w1 and w2 defined by w1 ⇔ O1 ≥ 1 and w2 ⇔ O2 ≥ 5 justified in
the proof by witnesses that assign the (otherwise unconstrained) wi variables
the right way. With these definitions, the constraint introduced in step [e] is
satisfied only by solutions that are not dominated by or equal to α, and α itself.
Lastly, the solution α is ruled out with the solution logging rule (in step [f ]) and
the PD cut (expressed with the w variables) is derived in step [g] and justified
by cutting planes reasoning as ([e] + [f ])/5.

By employing the described strategy for certifying PD cuts and a PB oracle
which supports proof logging in VeriPB syntax (in our case RoundingSat),
we implement proof logging for the algorithms described in Section 4. For proof
logging P -minimal, only the PD cuts added to the oracle on Line 4 of Algorithm 1
need to be certified. For BiOptSat (Algorithm 2), the minimization on Line 3
is extended to derive the lower bound constraint O1 ≥ α(O1) in the proof.
When using solution-improving search, this constraint is derived by the oracle
during the last unsatisfiable query, while for OLL, the proof logging procedure
described in [6], adapted for the PB setting, is used. By combining the lower
bound constraint O1 ≥ α(O1) with a PD cut derived from α after Line 4, the
constraint that is added to the working formula on Line 6 can be derived in the
proof.

6 Empirical Evaluation

We turn to presenting results of a cross-community evaluation of the MaxSAT-
translation based approach, native PB-based PBO approach and ILP-based ap-
proaches to MO-PBO. The experiments reportted on were run on 2.50-GHz Intel
Xeon Gold 6248 machines with 381-GB RAM in RHEL under a per-instance 1-
hour time and 32-GB memory limit.
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6.1 Solvers

We implemented the PB-based MO-PBO algorithms proposed in Section 4 (P -
minimal, and BiOptSat in the Sat-Unsat and OLL variants) in C++, using
the PB solver RoundingSat [32,33,21,22] as the decision oracle. We also im-
plemented proof logging for these algorithms, making use of VeriPB proof
logging offered by the RoundingSat oracle, and extended the MO-MaxSAT
solver Scuttle [46] by implementing certificates for the PBO-to-MaxSAT trans-
lation (recall Section 5), thereby obtaining certificates for the translation-based
approach when conjoined with the MO-MaxSAT certificates implemented in
Scuttle using its implementations for the P -minimal and the bi-objective Bi-
OptSat algorithms.

As an additional recent MO-MaxSAT approach for the evaluation, we con-
sider the core-guided approach from [15], which we refer to as lower-bounding
(LB). In terms of MO-ILP, we consider the branch-and-bound approach from [34]
(employing CPLEX v12.10 with non-trivial challenges in updating to a newer
version) and the MultiObjectiveAlgorithms.jl (v1.3.5) [26] implementation of the
scalarization-based algorithm [25], employing CPLEX (v20.1) as the ILP solver.
Due to intrinsic ILP-specific numerical issues observed in preliminary exper-
iments for the scalarization-based algorithm, we set the following parameters
in CPLEX: absolute gap tolerance 10−6, relative gap tolerance 0.0, and inte-
grality tolerance 0.0. It should be noted, however, that even with these tuned
parameters, we observed 2 instances where the scalarization-based ILP algorithm
reports one more non-dominated point than the PBO and MaxSAT-based im-
plementations of P -minimal, which are certified and thereby certifiably correct,
underlining the need of proof logging to ensure correctness.

In the runtime comparison, we run all solvers without proof logging, and
separately evaluate the proof logging overhead of the certified MO-MaxSAT and
MO-PBO implementations.

6.2 Benchmarks and Setup

In our empirical evaluation we use multi-objective PBO benchmarks from seven
problem domains: 365 bi-objective instances of learning interpretable decision
rules (LIDR) [56] obtained from [48]; 388 bi-objective flying tourist problem
(FTP) [59] instance obtained from [15] (after filtering out two empty instance
files); 160 knapsack (KS) instances with 3–5 objectives and 100 assignment prob-
lem instances with 3 objectives, from [51,50] encoded as MO-PBO; and 35 bi-
objective uncapacitated facility location problem (UFLP) instances from [37].
For further domains, we applied reverse-engineering described in [48] to the
single-objective instances in the benchmark set of the Pseudo-Boolean Com-
petition (2005–2024) [57,65], splitting multi-level objective combinations into
individual objectives, keeping only benchmarks where reverse-engineering was
succesful on all instances in the benchmark domain. With this process, we ob-
tained 100 bi-objective haplotype inference [40] and 1513 development assur-
ance level (DAL) [7,19] instances. The DAL instances were filtered based on the
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LION9 challenge documentation [20] to remove duplicates differing only in the
order of the objectives and ones turned from maximization to minimization by
multiplying the objectives by −1, resulting in 378 distinct DAL instances.

Figure 2 shows the constraint type distribution of each benchmark domain,
showing how the types of constraints vary significantly depending on the domain
(from clausal at-least-ones through cardinality constraints to more generic PB
constraints).

6.3 Results

Table 2 shows the number of solved instances for each solver per benchmark fam-
ily, separated into multi-objective algorithms for arbitrary number of objectives
and algorithm specific for bi-objective problems. All MaxSAT-based approaches
(P -minimal, lower-bounding, and BiOptSat) perform well on the LIDR and
haplotype inference benchmark instances which are based on fully clausal encod-
ings. The ILP-based approaches perform well on the representatives of classical
ILP problems: knapsack, assignment, and uncapacitated facility location. On
the real-world MO-PBO instance families DAL and FTP, performance between
the three constraint paradigms is not as clear-cut. The performance of the Bi-
OptSat implementations compared to their repective P -minimal counterparts
is relatively similar, showing the same trends with respect to the constraint

Table 2. Number of instances solved per benchmark family and solver.

Multi-objective Bi-objective
MaxSAT PB ILP MaxSAT PB

Family Total P -min LB P -min B&B Scalar BOS-SU BOS-SU BOS-OLL

LIDR 365 216 202 162 148 199 221 169 179
Hap. Inf. 100 20 18 18 0 6 19 17 18
DAL 378 216 197 251 154 159 —
FTP 388 112 122 146 123 257 113 145 117
KS 160 62 58 85 114 151 —
Assign. 100 19 20 18 51 55 —
UFLP 35 1 3 12 30 29 2 12 2
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Table 3. Number of uniquely solved instances and virtual best solver contribution
per benchmark family for Scuttle P -minimal (MS), native PBO P -minimal (PBO),
and the scalarization-based approach (ILP).

Uniquely solved VBS contribution
Family Total VBS solved MaxSAT PBO ILP MaxSAT PBO ILP

LIDR 365 222 21 0 6 200 10 12
Hap. Inf. 100 20 2 0 0 20 0 0
DAL 378 260 9 43 0 85 169 6
FTP 388 258 0 0 108 1 115 141
KS 160 158 4 1 64 7 65 84
Assign. 100 59 0 0 35 0 10 45
UFLP 35 29 0 0 17 0 3 26

paradigms: with the introduction of non-clausal constraints the PB-based im-
plementations outperform the MaxSAT-based implementations, but fail to fully
match the performance of the ILP-based algorithms.

Towards a more fine-grained performance analysis, we select one approach
as representative from each paradigm: for MO-MaxSAT Scuttle P -minimal,
for MO-PBO, the native P -minimal implementation, and for MO-ILP the sca-
larization-based approach [25]. For the three selected representatives Table 3
shows the number of uniquely solved instances, the number of contributions to
the virtual best solver (VBS)—i.e., the number of instances that a given solver
solved the fastest out of the selected three, as well as the number of solved
instances solved by the VBS. Additionally, Figure 3 shows a per-instance runtime
comparison of the approaches from the three paradigms. The trends visible in
Table 2 can be seen again: the MO-MaxSAT-based approach performs best on
clausal instances, while the ILP-based approach performs best on classical ILP
problems. We observe that the native PBO approach significantly outperforms
the others on the DAL domain, contributing to the virtual best solver more than
twice as much as MO-MaxSAT approach, whereas the contribution of ILP on the
VBS on the DAL domain is very small without any uniquely solved instances. On
the FTP domain, even though the ILP approach performs the best, we observe
an almost equal VBS contribution from the native PBO approach. The same
holds for the knapsack domain. The pairwise runtime comparison in Figure 3
further corroborates the complementary nature of the three approaches.

Complementary to the runtime performance, the ILP-based approach may
suffer from numerical issues as also observed in our experiments. Our first-of-
kind certified MO-PBO solvers based on translation to MO-MaxSAT and on the
other hand liftings of recent MO-MaxSAT algorithms to natively work on MO-
PBO offer guaranteed correctness. We also evaluated the cost of obtaining these
certificates: with proof logging enabled, we observed relatively modest average
overheads of 25% (for native MO-PBO P -minimal) and 48% (for Scuttle P -
minimal) compared to running the solvers with proof logging disabled.
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Fig. 3. Per-instance solving time comparisons representative solvers for each paradigm.

7 Conclusions

We engineered first-of-kind certifying algorithms and evaluated a range of ap-
proaches for pseudo-Boolean optimization. The results of the cross-community
evaluation of the approaches show that MO-ILP, native MO-PBO, and trans-
lation-based MO-MaxSAT approaches offer complementary performance. On
problems yielding mostly at-most-one constraints translating to MO-MaxSAT is
competitive. For instances (with even relatively small number of) more generic
PB constraints, it appears beneficial often to employ techniques which natively
search on such constraints. For problem settings for which ILP solvers have been
classically employed, MO-ILP appears also a good choice. Complementary to
the runtime performance, our implementations of MO-PBO solvers based on
translation to MO-MaxSAT and on liftings of recent MO-MaxSAT algorithms
to natively work on MO-PBO offer guaranteed correctness via proof logging.
Empirical runtime overhead from proof logging for these approaches is relatively
minor, especially when compared to significant overheads reported for numeri-
cally exact ILP solvers in the single objective setting [31].
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