

PREPROCESSING IN SAT-BASED MULTI-OBJECTIVE OPTIMIZATION

Christoph Jabs, Jeremias Berg, Hannes Ihalainen, Matti Järvisalo University of Helsinki

MOTIVATION

Maximum satisfiability (MaxSAT) solving has proven to be efficient for many real-world optimization problems

Many real-world applications have multiple conflicting objectives, calling for multi-objective (MO-)MaxSAT

Preprocessing (simplifying the instance before solving) is central in SAT, and becoming more popular in MaxSAT solving

WHY REDUNDANCY?

Instead of individual proofs (\dots) , uniform proofs of correctness and analysis of power (\rightarrow)

CONTRIBUTIONS

- 3 distinct redundancy notions
- Lifting (Max)SAT preprocessing techniques to MO-MaxSAT
- Open-source preprocessor for MO-MaxSAT: MaxPre 2.1
- Empirical evaluation

MULTI-OBJECTIVE MAXSAT

MO-MAXSAT INSTANCE

- Constraints: clauses
- Min. objectives: pseudo-boolean $O_i = \sum_x c_x^i \cdot x$

DOMINATING SOLUTIONS

 $\underline{\tau}$ weakly dominates $\underline{\delta}$: all objectives $O_i(\underline{\tau}) \leq O_i(\underline{\delta})$

<u> τ </u> dominates $\underline{\delta}$: additionally one objective $O_i(\underline{\tau}) < O_i(\underline{\delta})$

Every non-dominated solution is **Pareto-optimal**

AIM Compute the non-dominated set (Pareto-optimal costs) \Rightarrow Preprocessing needs to preserve the **non-dominated** set

- CONTRIBUTIONS

REDUNDANCY IN MO-MAXSAT

Redundant clause C_{red} : does not change the non-dominated set.

For every solution τ that does not satisfy C_{red} , there is a solution δ that weakly dominates τ and satisfies $C_{\rm red}$.

Reconstructible clause C_{rec} : redundant clause satisfied by forcing a fixed set of literals ω .

The weakly dominating solution is always $\delta = (\tau \setminus \neg \omega) \cup \omega$.

Literal-reconstructible clause: reconstructible clause with a single literal in the set ω .

()

PARETO-MINIMAL CORRECTION SETS

Pareto-MCS: multi-objective extension of minimal correction set.

Pareto Sols. Pareto-MCSes Non-dom. Set

At least one Pareto-MCS per non-dominated cost tuple, but not all need to be preserved.

Literal-reconstructible clauses preserve Pareto-MCSes, but reconstructible clauses do not.

RELATIONSHIPS BETWEEN REDUNDANCY NOTIONS

A	All (clauses			
	R	Redundant clauses			
		Reconstructible clauses			
		Literal-rec. clauses			

EXAMPLE (REDUNDANT CLAUSES)

 $F = \{(a_1 \lor a_2), (b_1 \lor b_2), (a_1 \lor b_1)\}$ $(a_1 \lor b_2), (a_2 \lor b_1), (a_2 \lor b_2), (a_3 \lor a_4) \}$ $O_1 = a_1 + a_2 + a_3 + a_4$ $O_2 = b_1 + b_2 + b_3$ $C_{\rm red} = (\neg a_2 \lor \neg b_2)$ $C_{\rm rec} = (\neg a_4), \quad \omega = \{a_3 \lor \neg a_4\}$ $C_{\text{l-rec}} = (\neg b_3), \quad I = \neg b_3$

MAXPRE 2.1 SUPPORTS LITERAL-RECONSTRUCTIBLE

- Blocked clause elimination
- Subsumption elimination
- Unit propagation*
- Self-subsuming resolution
- Failed literal elimination*
- Equivalent literal substitution*
- ► TrimMaxSAT

*on non-objective literals

RECONSTRUCTIBLE

EMPIRICAL EVALUATION

INSTANCE SIZE REDUCTION

PER-INSTANCE SOLVER PERFORMANCE IMPACT ON

Variables Clauses \sum Objective Coeffs. Pareto-MCSes

IMPACT ON SOLVER PERFORMANCE

	PackUP		LIDR		DAL				
# inst.	3692 (1420*)		366		96				
Solver	$\Delta \#$	$\Delta \sum t$	$\Delta \#$	$\Delta \sum t$.	$\Delta \#$	$\Delta \sum t$			
BIOPTSAT (bi-objective optimization)									
LSU	+27	-13.7	+3	-18.3	—	_			
CG	+5	-6.4	± 0	-5.5	_	—			
Hybrid	+5	-13.6	± 0	-4.9	—	-			
Scuttle	+6	-40.4	-1	+7.2	+1	-0.6			
CLM									
CG	-5	+14.5	± 0	+1.4	-7	+4.7			
IHS	-19	-68.7	-19	-3.3	-7	-0.1			
LEXIMAXIST (leximax optimization)									

(Group-)subsumed label elimination CHANGE OBJECTIVES

- Unit propagation⁺
- Equivalent literal substitution⁺
- Intrinsic at-most-ones
- Binary core removal

⁺on objective literals

fraction remaining *LEXIMAXIST (LSU) OBIOPTSAT (LSU) ×SCUTTLE

 Δ #: difference in number of solved instances

 $\Delta \sum t$: difference in cumulative runtime over solved instances in 10³

seconds

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN FACULTY OF SCIENCE

christophjabs.info/cp23

HELSINKI INSTITUTE FOR INFORMATION TECHNOLOGY