

SPEEDING UP MULTI-OBJECTIVE **OPTIMIZATION VIA CORES**

Christoph Jabs, Jeremias Berg, Matti Järvisalo University of Helsinki

MULTI-OBJECTIVE OPTIMIZATION

- Many real-world problems have multiple conflicting objectives
- Aim: Pareto-optimal solutions
- Need for provably optimal solutions
- Linear combination of objectives not sufficient

AUTOMATED REASONING

Programs to draw logical conclusions from given facts

MAXIMUM SATISFIABILITY

- Constraints: propositional formula
 - $(\mathbf{x}_1 \lor \overline{\mathbf{x}_2} \lor \mathbf{x}_3) \land (\mathbf{x}_1 \lor \overline{\mathbf{x}_2} \lor \mathbf{x}_4) \land$ $(\overline{\mathbf{x}_2} \lor \mathbf{x}_3 \lor \mathbf{x}_5) \land (\mathbf{x}_3 \lor \mathbf{x}_4 \lor \mathbf{x}_5)$
- Objective(s): linear function(s) to minimize
 - $O_1 = 3\overline{x_2} + 4x_3 + 2x_4 + 5x_5$
 - $\mathbf{O}_2 = 7\mathbf{x}_1 + 4\overline{\mathbf{x}_2} + 1\mathbf{x}_3 + 2\mathbf{x}_4$
- Efficient for real-world optimization problems

MOTIVATION

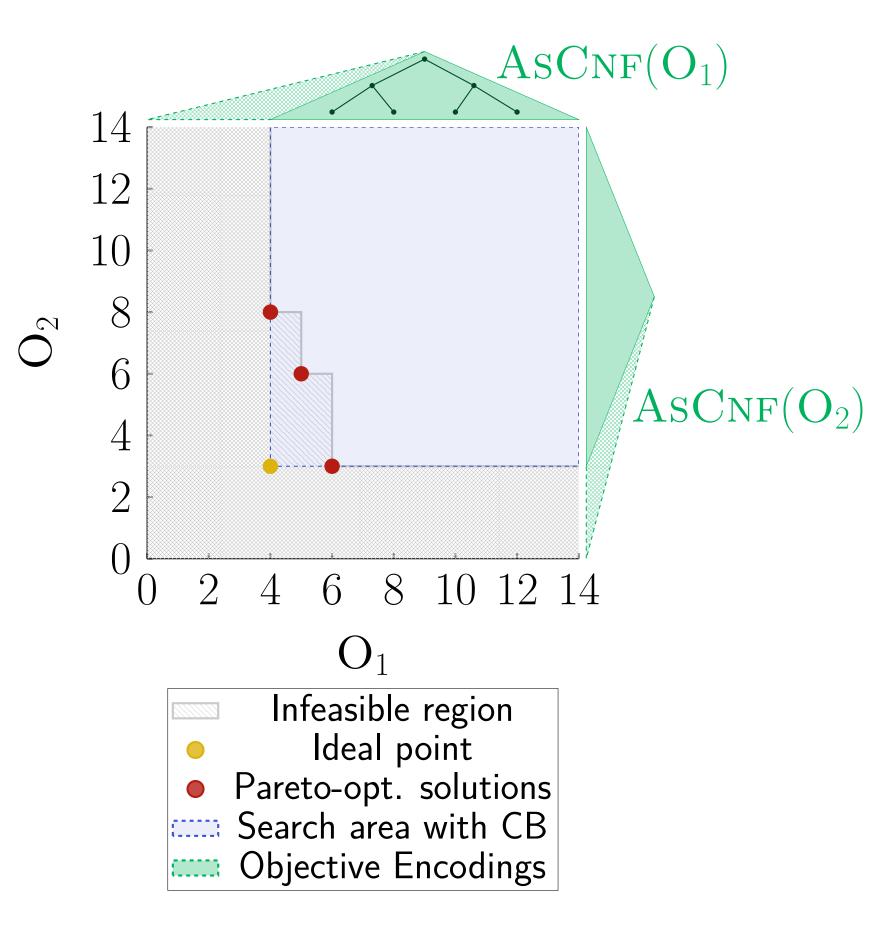
- Core-guided search common in MaxSAT but not yet in multi-objective setting
- Building large objective encodings constitutes botteleneck for MO-MaxSAT algorithms

CONTRIBUTIONS

- Preprocessing/reformulation technique for MO-MaxSAT
- Open-source implementation
- Empirical evaluation

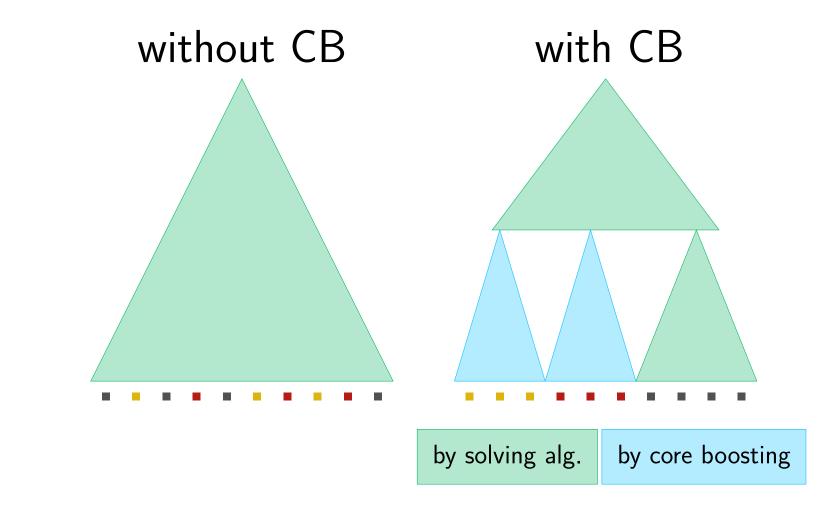
Suited for declarative problem solving

--- MULTI-OBJECTIVE CORE BOOSTING

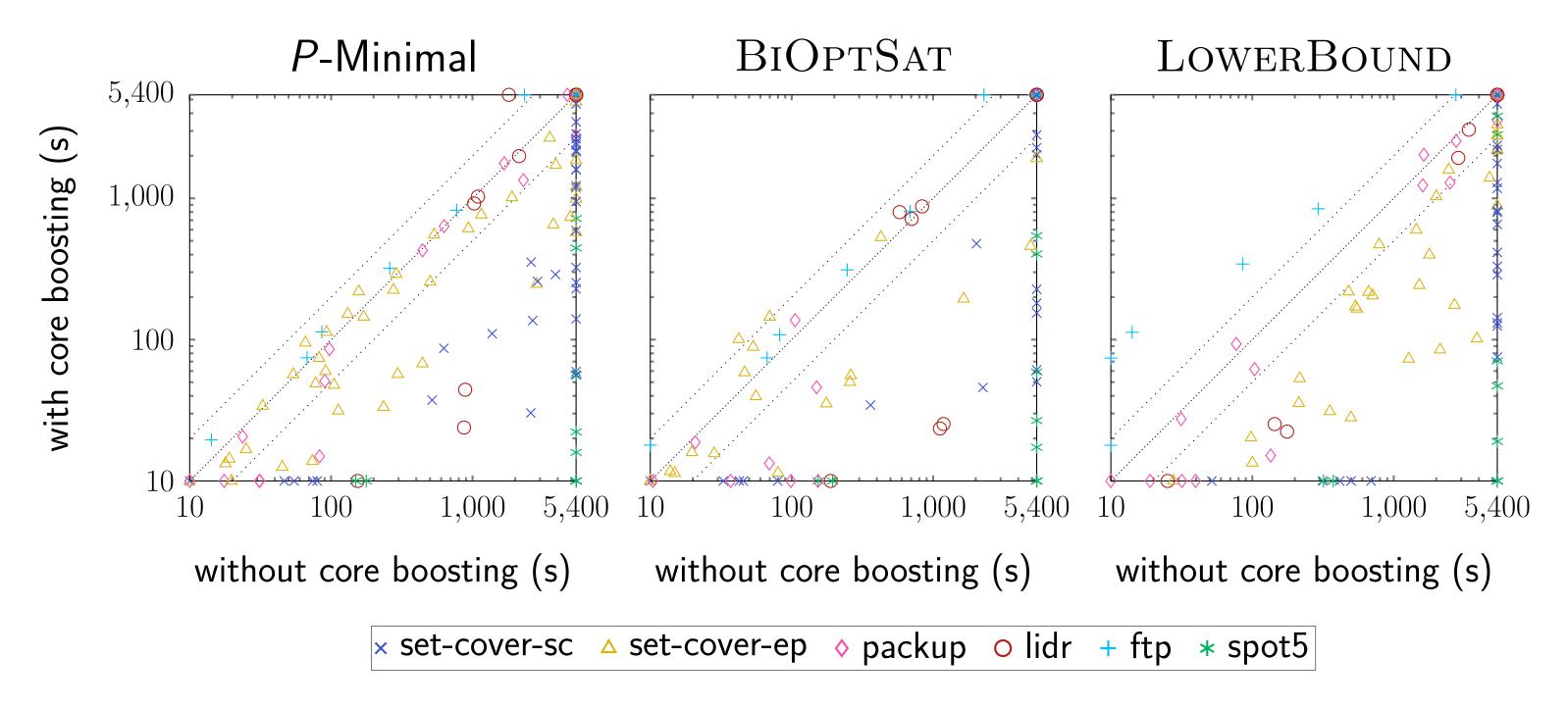

CORE-GUIDED SEARCH

- Iteratively relaxes inconsistencies over objective
- Reformulates objective

 $O_1 = 3\overline{x_2} + 4x_3 + 2x_4 + 5x_5$, into $O_1^{\text{Ref}} = x_4 + 2x_5 + 3a_2 + 3a_3 + b_2 + b_3 + 4$


CORE BOOSTING

- Reformulate each objective via core-guided search
- Build objective encodings over reformulated objectives


EFFECTS OF CORE BOOSTING

- Moves search anchor to ideal point: shrinks search space
- Restructures objective Encodings

EMPIRICAL EVALUATION

RESULTS PER-INSTANCE RUNTIME

COMPARISON TO OTHER PREPROCESSING

Change in number of solved instance ($\Delta \#$) through core boosting (CB) and preprocessing with MaxPre [Jabs et al. CP'23].

IMPLEMENTATION

Open-source Scuttle MO-MaxSAT solver bitbucket.org/coreo-group/scuttle THREE ALGORITHMS

- P-Minimal [Soh et al. CP'17]
- BIOPTSAT [Jabs et al. JAIR'24]
- LOWERBOUND [Cortes et al. TACAS'23]

BENCHMARKS

- Learning Interpretable Decision Rules [Malioutov et al. CP'18]
- Set covering (2 variants)
- Package upgradeability [Janota et al. JSAT'12]
- Flying tourist problem [Marques et al. ESWA'19]
- Reverse engineered single-objective MaxSAT instances

		set-cover-sc	set-cover-ep	packup	lidr	ftp	spot5
Algorithm	Prepro.	$\Delta \#$	$\Delta \#$	$\Delta \#$	$\Delta \#$	$\Delta \#$	$\Delta \#$
<i>P</i> -minimal	CB MaxPre	+20 +1	$+{f 5}$ -1	$\pm 0 \\ -1$	$-1 \\ \pm 0$	-1 + 3	+ 11 +1
BiOptSat	CB MaxPre	+ 8 ± 0	+ 1 ± 0	$egin{array}{c} \pm 0 \ \pm 0 \end{array}$	$egin{array}{c} \pm 0 \ \pm 0 \end{array}$	-2 + 2	+ 11 +1
LowerBound	CB MaxPre	+ 16 +1	+ 6 ±0	$+{f 1}$ -1	$\pm 0 + 1$	-1 + 1	$+11$ ± 0

Paper & Code available at christophjabs.info/aiday24

REFERENCES

C. Jabs, J. Berg, and M. Järvisalo: "Core Boosting in SAT-Based Multi-objective Optimization", CPAIOR 2024.

> HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN FACULTY OF SCIENCE